基因控制生物性状的两种方式篇1
基因控制生物性状的两种方式:
1.基因通过控制蛋白质的合成来直接控制性状。
2.基因通过控制酶的合成近而控制代谢过程,以此来控制性状。
基因是控制生物性状的基本单位:
染色体是指细胞核容易被碱性染料染成深色的物质,结构由DNA和蛋白质两种物质组成,遗传信息在DNA上,DNA是主要的遗传物质.一条染色体上包含一个DNA分子.一个DNA分子上包含有多个基因,基因是染色体上具有控制生物性状的DNA片段.生物的某个具体性状是由基因控制的,基因是决定生物性状的基本单位.
为什么基因控制生物的性状篇2
基因控制蛋白质的合成,蛋白质包括酶类和非酶蛋白,非酶蛋白直接参与细胞的构成,比如说,组蛋白参与染色体的构成,没有组蛋白的基因,DNA就无法形成光镜下可见的染色体。
生物体的非蛋白物质的合成和代谢则由一系列的酶促反应完成。比如构成细胞膜的磷脂,则是由甘油,脂肪酸和磷酸在酶作用下合成的。
这些酶由基因编码,一个基因决定一种酶,缺少这些基因,相应的物质就不能合成,生物体就会出现各种特征。另外,物质的代谢也由酶催化,比如大多数生物有合成糖酵解途径的酶的基因,因此能利用葡萄糖酵解获得能量,而立克次氏体则无这些基因,因此它不能利用糖类获得能量。
最后举个例子,人类的猫叫综合症是由于人类23号染色体的一段缺失造成的,缺失的染色体上有很多基因,没有了这些基因,人就表现出病症。
基因通过控制什么来控制生物性状篇3
1、基因通过控制酶的合成来控制代谢过程,进而控制生物体性状;
2、基因通过指导蛋白质的合成,控制蛋白质结构进而直接控制生物体的性状。
基因表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在3个水平上,即:
DNA修饰水平、RNA转录的调控、和mRNA翻译过程的控制;
微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;
多细胞生物的基因调控是细胞分化、形态发生和个体发育的基础,这类调控一般是长期的,而且往往是不可逆的。基因调控的研究有广泛的生物学意义,是发生遗传学和分子遗传学的重要研究领域。
扩展资料
基因分类
1、结构基因
基因中编码RNA或蛋白质的碱基序列。
(1)原核生物结构基因:连续的,RNA合成不需要剪接加工;
(2)真核生物结构基因:由外显子(编码序列)和内含子(非编码序列)两部分组成。
2、非结构基因
结构基因两侧的一段不编码的DNA片段(即侧翼序列),参与基因表达调控。
(1)顺式作用元件:能影响基因表达,但不编码RNA和蛋白质的DNA序列;
其中包括:
启动子:RNA聚合酶特异性识别结合和启动转录的DNA序列。有方向性,位于转录起始位点上游。
上游启动子元件:TATA盒上游的一些特定DNA序列,反式作用因子可与这些元件结合,调控基因的转录效率。
反应元件:与被激活的信息分子受体结合,并能调控基因表达的特异DNA序列。
增强子:与反式作用因子结合,增强转录活性,在基因任意位置都有效,无方向性。
沉默子:基因表达负调控元件,与反式作用因子结合,抑制转录活性。
Poly(A)加尾信号:结构基因末端保守的AAUAAA顺序及下游GT或T富含区,被多聚腺苷酸化特异因子识别,在mRNA3′端加约200个A。
(2)反式作用因子:能识别和结合特定的顺式作用元件,并影响基因转录的一类蛋白质或RNA。
参考资料来源:百度百科-基因
基因是怎样控制性状的呢篇4
这是科学家始终关注的关键问题,这个问题非常复杂,表现形式也不一样。
从1940年开始,遗传学家比德尔和美国的生物学家塔特姆合作,用红色面包霉做材料进行研究。他们发现它有很多优点,如繁殖快,培养方法简单和有显著的生化效应等,因此研究工作进展顺利,并且得到了巨大的成果。他们用X射线照射红色面包霉的分生孢子,使它发生突变。然后把这些孢子放到基本培养基(含有一些无机盐、糖和维生素等)上培养,发现其中有些孢子不能生长。这可能是由于基因的突变,丧失了合成果种生活物质的能力,而这种生活物质又是红色面包霉在正常生长中不可缺少的,所以它就无法生长。如果在基本培养基中补足了这些物质,那么孢子就能继续生长。应用这种办法,比德尔和塔特姆查明了各个基因和各类生活物质合成能力的关系,发现有些基因和氨基酸的合成有关、有些基因和维生素的合成有关,等等。
经过进一步研究,比德尔和塔特姆发现,在红色面包霉的生物合成中,每一阶段都受到一个基因的支配,当这个基因因为突变而停止活动的时候,就会中断这种酶的反应。这说明在生物合成过程中酶的活动是受基因支配的,也就是说,基因和酶的特性是同一序列的。于是他们在1946年提出了“一个基因一个酶”的理论,用来说明基因通过酶控制性状发育的观点,就是一个基因控制一个酶的合成。具体地说,每一个基因都是操纵一个并且只有一个酶的合成,因此控制那个酶所催化的单个化学反应。我们知道酶具有催化和控制生物体内化学瓜的特殊才能,这样,基因就通过控制酶的合成而控制生物体内的化学反应,并最终控制生物的性状表达。虽然“一个基因一个酶”的理论,既没有探究基因的物理、化学本性,也没有研究基因究竟怎样导向酶的形成,但是它一次从生化学的角度来研究遗传问题,注意到基因的生化效应,在探索基因作用机理方面是有很大贡献的。
但生物学家到后来发现问题不是那么简单,基因有时并不控制酶的合成,而是蛋白质的空间结构,从而达到控制性状的目的,于是在此基础上,遗传学家和生物化学家又提出了“一个基因一条多肽链”的假说,一个酶是由许多多肽链构成的。这样若干个基因控制若干个多肽链,这些多肽链又构成一个酶,并最终控制生物性状表达。
近年来,许多实验室对真核细胞基因的分析研究表明:DNA上的密码顺序一般并不是连续的,而是间断的;中间插入了不表达的,甚至产物不是蛋白质的DNA,相继发现“不连续的结构基因”、“路跃基因”、“重叠基因”等。这些研究成果说明,功能上相关的各个基因,不一定紧密连锁成操纵子的形式,它们不但可以分散在不同染色体或者同一染色体的不同部门上,而且同一个基因还可以分成几个部分。因此,过去的“一个基因一个酶”或者“一个基因一条多肽链”的说法就不够确切和全面了。实际上,基因控制生物性状的遗传是非常复杂的,有直接作用,有间接作用,还有依靠一种叫做操纵子的东西来控制生物的遗传,甚至还受到环境的影响等等。
如果基因的最后产物是结构蛋白,基因的变异可以直接影响到蛋白质的特性,从而表现出不同的遗传性状,从这个意义上说,可以看做是基因对性状表现的直接作用。
基因通过控制酶的合成,间接地作用于性状表现,这种情况比上述的第一种情况更为普遍。例如,高茎豌豆和矮茎豌豆,高茎(T)对矮茎(t)是显性。据研究,高茎豌豆含有一种能促进节间细胞伸长的物质——赤霉素,它是一类植物激素。赤霉素的产生需要酶的催化,而高茎豌豆的T基因的特定碱基序列,能够通过转录、翻译产生出促使赤霉素形成的酶,这种酶催化赤霉素的形成,赤霉素促进节间细胞生长,于是表现为高茎。而矮茎基因t,则不能产生这种酶,因而也不能产生赤霉素,节间细胞生长受到限制,表现为矮茎豌豆。
基因控制生物体性状的方式篇5
基因是在染色体上的.而最终控制生物性状的是蛋白质.正因为蛋白质的基本单位氨基酸有20多种.再加上蛋白质的空间结构不同.所以每个生物表现的性状都不同.可以说。
基因控制性质主要就是中心法则..给你说说。首先染色体上的DNA双链在细胞核内进行转入.以一条DNA母链为母版.根据碱基互补原则.转入出一条RNA.然后这条RNA出细胞核到核糖体上进行翻译.RNA上转录来的碱基以三个为一个密码子在TRNA的运载下.成为一个氨基酸.多个氨基酸经过脱水缩合形成一条多肽链.这多肽链进行盘绕,折叠。
就是蛋白质。.了(累。
.)最后蛋白质控制性状了。.^_^(希望对你有用。
.)。
试举两例说明基因控制生物性状的两条途径篇6
两条途径是:
1、基因通过控制蛋白质的合成来直接控制性状:合成的蛋白质直接能用,作为一个身体的部件直接构成人体,例如血红蛋白,基因控制血红蛋白的合成直接控制一系列性状,例如血液红色,血液带氧……
2、基因通过控制酶的合成近而控制代谢过程,以此来控制性状:酶是催化剂,不能直接构成人体,注意,不直接构成人体,而是一种成分罢了,而是用来控制代谢过程,例如合成的唾液淀粉酶,控制唾液消化淀粉的过程,进而控制性状,即唾液是否可以消化淀粉……