欢迎您访问365答案网,请分享给你的朋友!
生活常识 学习资料

152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有

时间:2017-08-01

152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有多少种放法?(不计箱子的排列,即两种放法,经过箱子的重新排列后,是一样的,就算一种放法)

A. 1

B. 7

C. 12

D. 24

答 案:A
设箱子个数为m,
因为每只箱子的球数均不相同,最少放10个,最多放20个,所以m≤20-10+1=11。
如果m=11,那么
球的总数10×11+(0+1+2+…+10)=110+55>152,所以m≤10。
如果m≤9,那么
球的总数≤10×9+(10+9+8+…+2)=90+54=144152,所以m=10
在m=10时,
10×10+(10+9+…+1)=155=152+3,所以一个箱子放10个球,其余箱子分别放11,12,14,15,16,17,18,19,20个球,总数恰好为152,而且符合要求的放法也只有这一种。故本题答 案为A。
相关推荐

Copyright © 2016-2020 www.365daan.com All Rights Reserved. 365答案网 版权所有 备案号:

部分内容来自互联网,版权归原作者所有,如有冒犯请联系我们,我们将在三个工作时内妥善处理。