152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有多少种放法?(不计箱子的排列,即两种放法,经过箱子的重新排列后,是一样的,就算一种放法)
A. 1
B. 7
C. 12
D. 24
答 案:A设箱子个数为m,
因为每只箱子的球数均不相同,最少放10个,最多放20个,所以m≤20-10+1=11。
如果m=11,那么
球的总数10×11+(0+1+2+…+10)=110+55>152,所以m≤10。
如果m≤9,那么
球的总数≤10×9+(10+9+8+…+2)=90+54=144152,所以m=10
在m=10时,
10×10+(10+9+…+1)=155=152+3,所以一个箱子放10个球,其余箱子分别放11,12,14,15,16,17,18,19,20个球,总数恰好为152,而且符合要求的放法也只有这一种。故本题答 案为A。