欢迎您访问365答案网,请分享给你的朋友!
生活常识 学习资料

四名棋手进行循环比赛,胜一局得2分,平一局得1分,负一局得0分,如果各人得的总分不同,第一名不是全

时间:2017-10-10

四名棋手进行循环比赛,胜一局得2分,平一局得1分,负一局得0分,如果各人得的总分不同,第一名不是全胜,那么至多有( )局平局。

A.4

B.3

C.2

D.1

答 案:B
B [解析]四名棋手进行循环比赛。共比赛了4×3÷2=6局。由比赛得分标准可知他们得分总和是2×6=12分。
根据“各人得分不同,且第一名不是全胜”的条件,他们得分总和只能有12=5+4+2+1或者12=5+4+3+0两种组合形式。
由“平局得分评分标准,且使平局局数最多”的条件,应该是甲得5分、乙得4分、丙得2分和丁得1分的组合形式。这样,得分偶数者(乙与丙)各自与得分奇数者(甲与丁)各平局一次后,这时乙与丙得分奇数,相互平局一次。

根据上述分析,结果如右图所示。
因此,他们四人循环比赛中,至多有3局是平局。
相关推荐

Copyright © 2016-2020 www.365daan.com All Rights Reserved. 365答案网 版权所有 备案号:

部分内容来自互联网,版权归原作者所有,如有冒犯请联系我们,我们将在三个工作时内妥善处理。