欢迎您访问365答案网,请分享给你的朋友!
生活常识 学习资料

同轴监控用的什么协议 同轴监控怎么安装

时间:2022-12-27

1,各位老板谁用的同轴监控最多了 和网络比较起来清晰度怎么样 问篇1

同轴高清是利用和模拟摄像机相同的同轴线缆传输高质量视频信号,可以达到1080P的画质效果。网络摄像机使用的是网线,基于TCP/IP协议的网络运行。

1、同轴监控可以说是普通模拟监控的升级版,是为了让模拟监控的用户能够通过升级的方式享受高清效果。所以对用户来说,需要了解,同轴高清的清晰度比模拟高很多,占用硬盘空间更大、对线材的要求更高、甚至对电源的要求也更高。2、接线方式:同轴和模拟完全一样,用视频线+bnc头;当然也可以用双绞线传输。3、线材选择:同轴高清对视频线的要求比普通模拟监控的要高。4、如果要接入同轴摄像机,则硬盘录像机必须采用同轴硬盘录像机。同轴硬盘录像机可以接入同轴摄像机,也可以接普通模拟摄像机。

IEEE802篇2

这个太多了,IEEE802是局域网和城域网宽带工作组,从IEEE802.1到IEEE802.16,简单描述如下:IEEE802.1:IEEE802.1标准提供了一个对整个IEEE802系列协议的概述,描述了IEEE802标准和开放系统基本参照模型(即ISO的OSI7层模型)之间的联系,解释这些标准如何和高层协议交互,定义了标准化的媒体接入控制层(MAC)地址格式,并且提供一个标准用于鉴别各种不同的协议。IEEE 802.1是一组协议的集合,如生成树协议、VLAN协议等。为了将各个协议区别开来,IEEE在制定某一个协议时,就在IEEE 802.1后面加上不同的小写字母,如IEEE 802.1d,IEEE 802.1w,IEEE 802.1q,IEEE 802.1x,等等;IEEE802.2:IEEE802.2协议是IEEE正式的802.3标准,它由Ethernet II发展而来。Ethernet 802.2将Ethernet II帧头的协议类型字段替换为帧长度字段,并加入LLC-802.2头,用以标记上层协议。LLC头包含目的服务访问点(DSAP)、源服务访问点(SSAP)和控制(Control)字段。IEEE802.3:802.3是1983年Novell发布其Netware/86网络套件时采用的私有以太网帧格式,该格式以当时尚未正式发布的IEEE802.3标准为基础;但是当两年以后IEEE正式发布802.3标准时情况发生了变化(IEEE在802.3帧头中又加入了802.2 LLC头),这使得Novell的Ethernet 802.3协议与正式的IEEE 802.3标准互不兼容;Ethernet 802.3只支持IPX/SPX协议,是目前所用的最普通的一种帧格式,在802.2之前是IPX网络事实上的标准帧类型。IEEE802.4:令牌总线标准。IEEE802.5:令牌环网标准。IEEE802.6:基于 DQDB(分布式队列双总线)技术的 IEEE MAN ,支持1.5到 155M 的数据率。IEEE802.10:无线局域网的加密技术规范;IEEE802.11:WIFI无线局域网标准,包括IEEE802.11a/b/g/n/s,等等。IEEE802.12:蓝牙无线局域网标准。IEEE802.14:局域网MAC子层定义。IEEE802.15:无线个域网标准组织。IEEE802.16:WIMAX无线城域网标准。

IEEE802.3(CSMA/CD访问控制) vs. IEEE802.5 (令牌环网访问控制) 我 们称Ethernet的传递形式为广播(broadcast)形式,Token Ring使用的则是指定(dedicated)形式;broadcast属于probabilistic形式的协议,也就是不能够保证工作站可以获得接通网线的能力。Token Ring则属于deterministic形式的协议,也就是使用一套规则来保证工作站有接通网线的能力。在IEEE定标准面,Ethernet属于802.3标准,而Token Ring则属于802.5标准: 特性类项 IEEE 802.3 IEEE 802.5逻辑形态 Bus Single Ring物理形态 Star, Bus Star介质 Optic fiber, Twisted Pair,Coaxial Cable Twisted Pair频宽 10 Mbps 4 or 16 Mbps连接形式 CSMA/CD Token Passing过载信息 Single 1(4 Mbps)或Multiple(16 Mbps)最大封包体积 1518 bytes 4500 (4 Mbps)18000 (16 Mbps)节点数目 1024 260节点间隔 2.8m (minimum) 100m (maximum)最长网络距离 2.8km 不等IEEE802.3 规格 IEEE802.3信号调变方式 基频(Base Band)信号编码 Manchester编码媒体存取控制 CSMA/CD种类 10 Base 5 10 Base 2 1Base 5 10 Base T传送速度 10 Mbps 1 Mbps 10 Mbps采用缆线 厚同轴缆线 RG-11 细同轴缆线 RG-58 A/U 无遮蔽式双绞线(UTP)网络连接形态 总线(Bus) 星状/总线长度限制 500m/区段 185m/区段 2.4km 4km可连最大段数 5段 5段 每一段最多可接计算机数目 100台 30台 媒体存取控制CSMA/CD 回IEEE802.3系采用CSMA/CD做为通信媒体存取方法,最常见的以太网络(Ethernet)即符合此标准。网络上的工作站可自由的取用线路,当它需传输数据时,先监听网络上是否有信号在传输,此即载波感测(Carrier Sense)。若察觉网络正忙,即暂时等一段随机之时间长度,然后再尝试一次,万一仍有信号传输中,则动复上述动作,此即多次存取(Mutiple Access)。若传出去了,仍得再监听一下此数据是否与它人的数据料碰撞在一起,这动作称为碰撞检出 (Collision Dectection )。信号调变方式 回基频方式:直接将数字信号以0及1编码,透过传收器(Tranceiver)直接在通信媒体上传输。一次只能传一个信道,其价格便宜,装设也较简单。宽带方式:将数字信号经过一高频信号调变,转换成较高频的模拟信号。通常以分频多任务方式(FDM, Frequency Division Multiplexing ),可在一个传输媒体上,进行多个通道的通信。Manchester编码 回此编码方式的优点是:1.不必附加同步时序,由传送信号的0与1之间的位阶变动即可达同步效果。此称之为「自发同步时序」(Self-clocking)。2.传输在线不会产生直流电压成份。3.较易做到传输错误之侦测。IEEE802.5IEEE802.5的规格如下:规格 IEEE802.5FSK(载波频带)信号调变方式信号编码 差分式Manchester编码媒体存取控制 记号总线传送速度 4 Mbps 4,16 Mbps采用缆线 无遮敝式双绞线 遮敝式双绞线网络连接形态 环状每一段最多可接计算机数目 250台另外还要一提的是,有个IEEE802.4标准,在物理上使用bus形态的,但却以Token Passing的形式来传递数据。和Token Ring一样,只有得到Token的节点才可以发送数据,但一旦其获得了接收节点的确认回应,就得把Token交给下一节点了。在网络里必须有一套机制来追踪哪一个节点会是下一个得到Token的节点。在网络上面会有一个master的角色,如果token丢失或由某些原因不能传送,master会先对全网络发出请求,然后宣布取消旧的token而重新发放一个,它比任何其它节点要有最优先权获得Token。不过比起Token Ring的star形态来说,802.4毕竟还是有其不足之处的。比如在802.5里面使用的mart hub,有能力侦测到工作不良的节点,从而可以把Token绕过它来传递,同时会指示出哪一个节点有问题,而802.4则做不到这点。

传统以太网的以太网和IEEE8023篇3

以太网是Xerox公司发明的基带LAN标准。它采用带冲突检测的载波监听多路访问协议(CSMA/CD),速率为10Mbps,传输介质为同轴电缆。以太网是在20世纪70年代为解决网络中零散的和偶然的堵塞而开发的,而IEEE802.3标准是在最初的以太网技术基础上于1980年开发成功的。现在,以太网一词泛指所有采用CSMA/CD协议的局域网。以太网2.0版由数字设备公司、Intel公司和Xerox公司联合开发,它与IEEE802.3兼容。以太网和IEEE802.3通常由接口卡(网卡)或主电路板上的电路实现。以太网电缆协议规定用收发器将电缆连到网络物理设备上。收发器执行物理层的大部分功能,其中包括冲突检测及收发器电缆将收发器连接到工作站上。IEEE802.3提供了多种电缆规范,10Base5就是其中的一种,它与以太网最为接近。在这一规范中,连接电缆称作连接单元接口(AUI),网络连接设备称为介质访问单元(MAU)而不再是收发器。 在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而同时发出数据时,就发生冲突。这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。 尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型。

制定CAN总线链路层协议都需要做什么篇4

CAN总线协议 依据国际标准化组织/开放系统互连(International Standardi-zation Organization/Open SystemInterconnection,ISO/OSI)参考模型,CAN的ISO/OSI参考模型的层结构如图7-6所示。下面对CAN协议的媒体访问控制子层的一些概念和特征做如下说明: (1)报文(Message) 总线上的报文以不同报文格式发送,但长度受到限制。当总线空闲时,任何一个网络上的节点都可以发送报文。 (2)信息路由(Information Routing) 在CAN中,节点不使用任何关于系统配置的报文,比如站地址,由接收节点根据报文本身特征判断是否接收这帧信息。因此系统扩展时,不用对应用层以及任何节点的软件和硬件作改变,可以直接在CAN中增加节点。 (3)标识符(Identifier) 要传送的报文有特征标识符(是数据帧和远程帧的一个域),它给出的不是目标节点地址,而是这个报文本身的特征。信息以广播方式在网络上发送,所有节点都可以接收到。节点通过标识符判定是否接收这帧信息。 (4)数据一致性应确保报文在CAN里同时被所有节点接收或同时不接收,这是配合错误处理和再同步功能实现的。 (5)位传输速率不同的CAN系统速度不同,但在一个给定的系统里,位传输速率是唯一的,并且是固定的。 (6)优先权 由发送数据的报文中的标识符决定报文占用总线的优先权。标识符越小,优先权越高。 (7)远程数据请求(Remote Data Request) 通过发送远程帧,需要数据的节点请求另一节点发送相应的数据。回应节点传送的数据帧与请求数据的远程帧由相同的标识符命名。 (8)仲裁(Arbitration) 只要总线空闲,任何节点都可以向总线发送报文。如果有两个或两个以上的节点同时发送报文,就会引起总线访问碰撞。通过使用标识符的逐位仲裁可以解决这个碰撞。仲裁的机制确保了报文和时间均不损失。当具有相同标识符的数据帧和远程帧同时发送时,数据帧优先于远程帧。在仲裁期间,每一个发送器都对发送位的电平与被监控的总线电平进行比较。如果电平相同,则这个单元可以继续发送,如果发送的是“隐性”电平而监视到的是“显性”电平,那么这个单元就失去了仲裁,必须退出发送状态。 (9)总线状态 总线有“显性”和“隐性”两个状态,“显性”对应逻辑“0”,“隐性”对应逻辑“1”。“显性”状态和“隐性”状态与为“显性”状态,所以两个节点同时分别发送“0”和“1”时,总线上呈现“0”。CAN总线采用二进制不归零(NRZ)编码方式,所以总线上不是“0”,就是“1”。但是CAN协议并没有具体定义这两种状态的具体实现方式,如图7-7所示。 10)故障界定(Confinement) CAN节点能区分瞬时扰动引起的故障和永久性故障。故障节点会被关闭。 (11)应答接收节点对正确接收的报文给出应答,对不一致报文进行标记。 (12)CAN通讯距离最大是10公里(设速率为5Kbps),或最大通信速率为1Mbps(设通信距离为40米)。 (13)CAN总线上的节点数可达110个。通信介质可在双绞线,同轴电缆,光纤中选择。 (14)报文是短帧结构,短的传送时间使其受干扰概率低,CAN有很好的效验机制,这些都保证了CAN通信的可靠性。 2 CAN总线协议内容 CAN总线的物理层是将ECU连接至总线的驱动电路。ECU的总数将受限于总线上的电气负荷。物理层定义了物理数据在总线上各节点间的传输过程,主要是连接介质、线路电气特性、数据的编码/解码、位定时和同步的实施标准。BOSCH CAN基本上没有对物理层进行定义,但基于CAN的ISO标准对物理层进行了定义。设计一个CAN系统时,物理层具有很大的选择余地,但必须保证CAN协议中媒体访问层非破坏性位仲裁的要求,即出现总线竞争时,具有较高优先权的报文获取总线竞争的原则,所以要求物理层必须支持CAN总线中隐性位和显性位的状态特征。在没有发送显性位时,总线处于隐性状态,空闲时,总线处于隐性状态;当有一个或多个节点发送显性位,显性位覆盖隐性位,使总线处于显性状态。在此基础上,物理层主要取决于传输速度的要求。从物理结构上看,CAN节点的构成如图7-8所示。在CAN中,物理层从结构上可分为三层:分别是物理层信令(Physical Layer Signaling,PLS)、物理介质附件(Physical MediaAttachment,PMA)层和介质从属接口(Media Dependent:Inter-face,MDI)层。其中PLS连同数据链路层功能由CAN控制器完成,PMA层功能由CAN收发器完成,MDI层定义了电缆和连接器的特性。目前也有支持CAN的微处理器内部集成了CAN控制器和收发器电路,如MC68HC908GZl6。PMA和MDI两层有很多不同的国际或国家或行业标准,也可自行定义,比较流行的是ISOll898定义的高速CAN发送/接收器标准。理论上,CAN总线上的节点数几乎不受限制,可达到2000个,实际上受电气特性的限制,最多只能接100多个节点。 CAN的数据链路层是其核心内容,其中逻辑链路控制(Logical Link control,LLC)完成过滤、过载通知和管理恢复等功能,媒体访问控制(Medium Aeeess control,MAC)子层完成数据打包/解包、帧编码、媒体访问管理、错误检测、错误信令、应答、串并转换等功能。这些功能都是围绕信息帧传送过程展开的。 3 CAN总线的报文传输和结构 1.报文类型 在CAN2.0B的版本协议中有两种不同的帧格式,不同之处为标识符域的长度不同,含有ll位标识符的帧称之为标准帧,而含有29位标识符的帧称为扩展帧。如CAN1.2版本协议所描述,两个版本的标准数据帧格式和远程帧格式分别是等效的,而扩展格式是CAN2.0B协议新增加的特性。为使控制器设计相对简单,并不要求执行完全的扩展格式,对于新型控制器而言,必须不加任何限制的支持标准格式。但无论是哪种帧格式,在报文 传输时都有以下四种不同类型的帧: (1)数据帧(Data ) 数据帧将数据从发送器传输到接收器。 (2)远程帧(Remote ) 总线单元发出远程帧,请求发送具有同一标识符的数据帧。 (3)错误帧(Error ) 任何单元检测到总线错误就发出错误帧。 (4)过载帧(Overload ) 过载帧用在相邻数据帧或远程帧之间提供附加的延时。 数据帧或远程帧与前一个帧之间都会有一个隔离域,即帧间间隔。数据帧和远程帧可以使用标准帧及扩展帧两种格式。 4 CAN总线应用领域 CAN总线最初是德国BOSCH为汽车行业的监测,控制而设计的。现已应用到铁路、交通、国防、工程、工业机械、纺织、农用机械、数控、医疗器械机器人、楼宇、安防等方面。

CAN总线协议 依据国际标准化组织/开放系统互连(International Standardi-zation Organization/Open SystemInterconnection,ISO/OSI)参考模型,CAN的ISO/OSI参考模型的层结构如图7-6所示。下面对CAN协议的媒体访问控制子层的一些概念和特征做如下说明: (1)报文(Message) 总线上的报文以不同报文格式发送,但长度受到限制。当总线空闲时,任何一个网络上的节点都可以发送报文。 (2)信息路由(Information Routing) 在CAN中,节点不使用任何关于系统配置的报文,比如站地址,由接收节点根据报文本身特征判断是否接收这帧信息。因此系统扩展时,不用对应用层以及任何节点的软件和硬件作改变,可以直接在CAN中增加节点。 (3)标识符(Identifier) 要传送的报文有特征标识符(是数据帧和远程帧的一个域),它给出的不是目标节点地址,而是这个报文本身的特征。信息以广播方式在网络上发送,所有节点都可以接收到。节点通过标识符判定是否接收这帧信息。 (4)数据一致性应确保报文在CAN里同时被所有节点接收或同时不接收,这是配合错误处理和再同步功能实现的。 (5)位传输速率不同的CAN系统速度不同,但在一个给定的系统里,位传输速率是唯一的,并且是固定的。 (6)优先权 由发送数据的报文中的标识符决定报文占用总线的优先权。标识符越小,优先权越高。 (7)远程数据请求(Remote Data Request) 通过发送远程帧,需要数据的节点请求另一节点发送相应的数据。回应节点传送的数据帧与请求数据的远程帧由相同的标识符命名。 (8)仲裁(Arbitration) 只要总线空闲,任何节点都可以向总线发送报文。如果有两个或两个以上的节点同时发送报文,就会引起总线访问碰撞。通过使用标识符的逐位仲裁可以解决这个碰撞。仲裁的机制确保了报文和时间均不损失。当具有相同标识符的数据帧和远程帧同时发送时,数据帧优先于远程帧。在仲裁期间,每一个发送器都对发送位的电平与被监控的总线电平进行比较。如果电平相同,则这个单元可以继续发送,如果发送的是“隐性”电平而监视到的是“显性”电平,那么这个单元就失去了仲裁,必须退出发送状态。 (9)总线状态 总线有“显性”和“隐性”两个状态,“显性”对应逻辑“0”,“隐性”对应逻辑“1”。“显性”状态和“隐性”状态与为“显性”状态,所以两个节点同时分别发送“0”和“1”时,总线上呈现“0”。CAN总线采用二进制不归零(NRZ)编码方式,所以总线上不是“0”,就是“1”。但是CAN协议并没有具体定义这两种状态的具体实现方式,如图7-7所示。 10)故障界定(Confinement) CAN节点能区分瞬时扰动引起的故障和永久性故障。故障节点会被关闭。 (11)应答接收节点对正确接收的报文给出应答,对不一致报文进行标记。 (12)CAN通讯距离最大是10公里(设速率为5Kbps),或最大通信速率为1Mbps(设通信距离为40米)。

这个问题我觉得你应该和CAN总线协议分开,因为CAN总线硬件链路层协议和数据链路层协议都是标准的,就是CAN2.0A和CAN2.0B协议,我觉得你应该是要定义上层应用的协议,专门针对你的通讯信息的协议,比如说你要传输“设置量程上下限,报警上下限,绘制历史和实时曲线”等信息的协议,如果是这样的话,那就简单了,解释一下:协议就是通讯两端对话的语言,你必须有至少两个CAN节点,然后通过线路将其连接(就是一对差分线),然后就可以利用CAN底层协议互相通讯,而你要定的协议就是定义CAN接收的什么数据代表什么意思,一般来说,一个协议要包括头和尾及中间的内容,如当接收到一帧的第一个字节(CAN协议一帧可以传送8个字节)为0xfe时认为这是你的一个协议包的开始标志字节,一个协议包比如定义为8个字节,最后一个字节为0xEF为结束字节标志,这样当你的CAN接收到第一个字节为0xfe最后一个字节为0xef的帧就是你需要的协议包,你可以定义第二个字节表示标志此包传输意义的字节,如为0x01表示“设置量程上下限”为0x02表示“报警上下限”等等,其他字节可以设置相应的需要设置的值。 如果是一个复杂的协议的话,可以用多个帧表示一个你的协议包,而且一般需要加上一个或几个字节的校验字节,以验证是否传输正确。

同轴高清的CVI现在市场上用的常用的是720P吗没有像素更高一点的篇5

是的 首先HDCVI采用点对点传输,保证信号传输的可靠性。IPNC采用以太网传输技术,传输路径经过网络路由、交换等,存在网络抖动、丢包等风险。为了适应网络环境保证视频的流畅性,往往采用视频缓冲技术,目前较好的网络环境点对点传输能保证控制在300ms以内,在网络较差的环境下,延时现象更为严重。HDCVI技术在点对点传输过程中不存在延时,高清视频源从摄像机到后端设备预览过程没有经过编码解码,图像完全保持原始效果,提供用户更完美的视觉效果。  其二,目前迈视模拟标清设备的升级换代也可以无缝切换到HDCVI产品,通过更换摄像机和DVR即可实现全面高清监控的需求。模拟标清设备的施工、部署方式是最为广泛采用的,是目前工程商、施工人员在安防工程建设里主要采用的系统,HDCVI技术沿袭模拟标清的传输方式,在施工和部署上最容易被广大用户接受并快速开展实施。而IPNC类似IT建设的施工方式,,对施工人员、拓扑设计、流量设计、节点设备选型都有较高要求。  其三,HDCVI系统的使用方式与标清系统完全一致,模拟摄像机加DVR部署系统设备间即插即用,以DVR交互操作为主。相比IPNC的使用,往往需要对摄像机进行设置、初始化操作等,此外还存在网络协议兼容性问题导致的通信或配置异常风险。即便是Onvif等标准化协议的应用,IPNC加NVR系统的推广,其易用程度仍无法与模拟系统相媲美。  此外,由于HDCVI使用多信号共缆传输技术,使用一条同轴电缆视频即可完成传视频和音频信号和双向数据传输,实现音视频同步传输以及反向发送控制信号,如云台转动、变倍控制等,进一步降低了施工安装的复杂程度。  更为重要的是,由于迈视HDCVI技术不仅兼顾实用价值,适应长距离、无延时、强干扰的传输方式以及复杂的部署场合,更具有低成本、高性价比的竞争优势。基于迈视HDCVI技术的高清视频监控系统将保持与原模拟标清系统相当的成本,以同等的系统成本,体验到高清监控的魅力。现在市面上有720P 960P的CVI摄像机,都用的很多。

局域网的传输介质篇6

传输介质 1、概念:传输介质是网络联接设备间的中间介质,也是信号传输的媒体。 2、分类: 局域网的典型传输介质:双绞线、同轴电缆、光纤 1、双绞线 (1)工作原理:双绞线是现在最普通的传输介质,它由两条相互绝缘的铜线组成,典型直径为1毫米。两根线绞接在一起是为了防止其电磁感应在邻近线对中产生干扰信号。外面再用朔料套套起来。 (2) 分类: 非屏蔽双绞线:无屏蔽层,一般由4对双绞线对组成,最长100米,有较好的性价比,被广泛使用。分为1,2,3,4,5,超5类。3类用于10MBPS的传输;5类100MBPS以上的网连接。 屏蔽双绞线:具有一个金属甲套,一般由2对双绞线组成,最长为十几千米,抗干扰性好,性能高,成本高,没有被广泛使用。对电磁干扰具有较强的抵抗能力,适用于网络流量较大的高速网络协议应用。屏蔽双绞线可分为6类、7类双绞线分别可工作于200MHz和600MHz的频率带宽之上,且采用特殊设计的RJ45 插头(座)。 [解释两个个概念]频率带宽(MHz)与线缆所传输的数据的传输速率(Mbps)是有区别的——Mbps衡量的是单位时间内线路传输的二进制位的数量,MHz衡量的则是单位时间内线路中电信号的振荡次数。 3、同轴电缆 (1)概念:由同轴的内外两条导线构成,内导线是一根金属线,外导线是一条网状空心圆柱导体,内外导线有一层绝缘材料,最外层是保护性塑料外套。金属屏蔽层能将磁场反射回中心导体,同时也使中心导体免受外界干扰,故同轴电缆比双绞线具有更高的带宽和更好的噪声抑制特性。 (2)分类: 一种为50Ω(指沿电缆导体各点的电磁电压对电流之比)同轴电缆,用于数字信号的传输,即基带同轴电缆; 分为:粗缆最大距离为2500米,价格高。 细缆按最大长度为185米。 另一种为75Ω同轴电缆,用于宽带模拟信号的传输,即宽带同轴电缆。但需要安装附加信号,安装困难,适用于长途电话网,电视系统,宽带计算机网3)缺点: 由于物理可靠性不好,易受干拢,由双绞线替代。 3、光纤 光导纤维是软而细的、利用内部全反射原理来传导光束的传输介质,有单模和多模之分。单模(模即Mode,入射角)光纤多用于通信业。多模光纤多用于网络布线系统。 光纤为圆柱状,由3个同心部分组成——纤芯、包层和护套,每一路光纤包括两根,一根接收,一根发送。与同轴电缆比较,光纤可提供极宽的频带且功率损耗小、传输距离长(2公里以上)、传输率高(可达数千Mbps)、抗干扰性强(不会受到电子监听),是构建安全性网络的理想选择。

光纤

IEE802系列协议有哪些啊篇7

IEEE802局域网标准 IEEE是英文Institute of Electrical and Electronics Engineers的简称,其中文译名是电气和电子工程师协会。该协会的总部设在美国,主要开发数据通信标准及其他标准。IEEE802委员会负责起草局域网草案,并送交美国国家标准协会(ANSI)批准和在美国国内标准化。IEEE还把草案送交国际标准化组织(ISO)。ISO把这个802规范称为ISO 8802标准,因此,许多IEEE标准也是ISO标准。例如,IEEE 802.3标准就是ISO 802.3标准。 IEEE 802规范定义了网卡如何访问传输介质(如光缆、双绞线、无线等),以及如何在传输介质上传输数据的方法,还定义了传输信息的网络设备之间连接建立、维护和拆除的途径。遵循IEEE 802标准的产品包括网卡、桥接器、路由器以及其他一些用来建立局域网络的组件。 一、IEEE802委员会 IEEE802委员会成立于1980年初,专门从事局域网标准的制定工作,该委员会分成三个分会: 传输介质分会----研究局域网物理层协议 信号访问控制分会----研究数据链路层协议 高层接口分会----研究从网络层到应用层的有关协议 二、IEEE802局域网标准系列 IEEE802是一个局域网标准系列 IEEE802.1A 局域网体系结构 IEEE802.1B 寻址、网络互连与网络管理 IEEE802.2 逻辑链路控制(LLC) IEEE802.3 CSMA/CD访问控制方法与物理层规范 IEEE802.3i 10Base-T访问控制方法与物理层规范 IEEE802.3u 100Base-T访问控制方法与物理层规范 IEEE802.3ab 1000Base-T访问控制方法与物理层规范 IEEE802.3z 1000Base-SX和1000Base-LX访问控制方法与物理层规范 IEEE802.4 Token-Bus访问控制方法与物理层规范 IEEE802.5 Token-Ring访问控制方法 IEEE802.6 城域网访问控制方法与物理层规范 IEEE802.7 宽带局域网访问控制方法与物理层规范 IEEE802.8 FDDI访问控制方法与物理层规范 IEEE802.9 综合数据话音网络 IEEE802.10 网络安全与保密 IEEE802.11 无线局域网访问控制方法与物理层规范 IEEE802.12 100VG-AnyLAN访问控制方法与物理层规范 IEEE 802.14 协调混合光纤同轴(HFC)网络的前端和用户站点间数据通信的协议。 IEEE 802.15 无线个人网技术标准,其代表技术是蓝牙(Bluetooth)。 对于IEBE802,大家应当掌握该标准及其标准所规定的内容,还要注意IEEE802标准实现的产品都是使用曼彻斯特码。此还有针对局域网的IEEE802.3、IEEE802.4、IEEE802.5标准。其中IEEE802.3是载波侦听多路访问局域网的标准。同时需要理解总线网的特点,即它进行媒体访问无优先权,信息的发送是通过竞争进行的;结构简单,媒体介入方便,价格便宜;但节点之间的最大距离有限制;信息负载少,数据吞吐量较高,延时短;反之,冲突的增加,数据吞吐量下降,网络延时增加;实时性差;采用点到点或广播式通信。通过这些特点,大家可以对局域网的性能有所了解,同时对于10BASE5、10BASE2、10BASE—T三种以太网从长度、连接数、接口等方面做到心中有数,从而为局域网组网选择提供依据。IEEE802.4是令牌网的标准。应当注意的是它的4种优先级,使用的传输介质和它的特点,从它的特点我们可以清晰的看出该标准采用无冲突媒体访问方式;结构从物理上讲是总线网,而逻辑上是环形网,连接简单;信息载荷与总线网在信息载荷方面的特点正好相反;传输延迟固定。 IEEE802.5标准,定义了令牌环(Token Ring) 介质访问控制子层与物理层规范 主要表现为 1.单令牌协议2.优先级位3.监控站4.预约指示器 IEEE802.5标准定义了25种截止访问控制桢,用以完成环维护功能

IEEE802标准就有不少了,802.1(A):综述和体系结构802.1(B):寻址、网际互联和网络管理802.2:逻辑链路控制802.3:CSMA/CD接入方法和物理层技术标准802.4:令牌总线接入方法和物理层技术标准802.5:令牌环网接入方法和物理层技术标准802.6:MAN接入方法和物理层技术标准802.7:宽带技术;802.8:光线技术802.9:综合话音数据局与网802.10:可互操作的局与网的安全802.11:WLAN接入方法和物理层标准802.12:优先级轮询LAN802.13802.14:基于电缆电视的WAN802.15:无限个人区域网络WPAN(蓝牙)802.16:宽带无线网络802.17:弹性分组环RPR

Copyright © 2016-2020 www.365daan.com All Rights Reserved. 365答案网 版权所有 备案号:

部分内容来自互联网,版权归原作者所有,如有冒犯请联系我们,我们将在三个工作时内妥善处理。