欢迎您访问365答案网,请分享给你的朋友!
生活常识 学习资料

数据分析实际案例之:pandas在餐厅评分数据中的使用

时间:2023-04-27
文章目录

简介餐厅评分数据简介分析评分数据 简介

为了更好的熟练掌握pandas在实际数据分析中的应用,今天我们再介绍一下怎么使用pandas做美国餐厅评分数据的分析。

餐厅评分数据简介

数据的来源是UCI ML Repository,包含了一千多条数据,有5个属性,分别是:

userID: 用户ID

placeID:餐厅ID

rating:总体评分

food_rating:食物评分

service_rating:服务评分

我们使用pandas来读取数据:

import numpy as nppath = '../data/restaurant_rating_final.csv'df = pd.read_csv(path)df

userIDplaceIDratingfood_ratingservice_rating0U10771350852221U10771350382212U10771328252223U10771350601224U1068135104112………………1156U10431326301111157U10111327151101158U10681327331101159U10681325941111160U1068132660000

1161 rows × 5 columns

分析评分数据

如果我们关注的是不同餐厅的总评分和食物评分,我们可以先看下这些餐厅评分的平均数,这里我们使用pivot_table方法:

mean_ratings = df.pivot_table(values=['rating','food_rating'], index='placeID', aggfunc='mean')mean_ratings[:5]

food_ratingratingplaceID1325601.000.501325611.000.751325641.251.251325721.001.001325831.001.00

然后再看一下各个placeID,投票人数的统计:

ratings_by_place = df.groupby('placeID').size()ratings_by_place[:10]

placeID132560 4132561 4132564 4132572 15132583 4132584 6132594 5132608 6132609 5132613 6dtype: int64

如果投票人数太少,那么这些数据其实是不客观的,我们来挑选一下投票人数超过4个的餐厅:

active_place = ratings_by_place.index[ratings_by_place >= 4]active_place

Int64Index([132560, 132561, 132564, 132572, 132583, 132584, 132594, 132608, 132609, 132613, ... 135080, 135081, 135082, 135085, 135086, 135088, 135104, 135106, 135108, 135109], dtype='int64', name='placeID', length=124)

选择这些餐厅的平均评分数据:

mean_ratings = mean_ratings.loc[active_place]mean_ratings

food_ratingratingplaceID1325601.0000000.5000001325611.0000000.7500001325641.2500001.2500001325721.0000001.0000001325831.0000001.000000………1350881.1666671.0000001351041.4285710.8571431351061.2000001.2000001351081.1818181.1818181351091.2500001.000000

124 rows × 2 columns

对rating进行排序,选择评分最高的10个:

top_ratings = mean_ratings.sort_values(by='rating', ascending=False)top_ratings[:10]

food_ratingratingplaceID1329551.8000002.0000001350342.0000002.0000001349862.0000002.0000001329221.5000001.8333331327552.0000001.8000001350741.7500001.7500001350132.0000001.7500001349761.7500001.7500001350551.7142861.7142861350751.6923081.692308

我们还可以计算平均总评分和平均食物评分的差值,并以一栏diff进行保存:

mean_ratings['diff'] = mean_ratings['rating'] - mean_ratings['food_rating']sorted_by_diff = mean_ratings.sort_values(by='diff')sorted_by_diff[:10]

food_ratingratingdiffplaceID1326672.0000001.250000-0.7500001325941.2000000.600000-0.6000001328581.4000000.800000-0.6000001351041.4285710.857143-0.5714291325601.0000000.500000-0.5000001350271.3750000.875000-0.5000001327401.2500000.750000-0.5000001349921.5000001.000000-0.5000001327061.2500000.750000-0.5000001328701.0000000.600000-0.400000

将数据进行反转,选择差距最大的前10:

sorted_by_diff[::-1][:10]

food_ratingratingdiffplaceID1349870.5000001.0000000.5000001329371.0000001.5000000.5000001350661.0000001.5000000.5000001328511.0000001.4285710.4285711350490.6000001.0000000.4000001329221.5000001.8333330.3333331350301.3333331.5833330.2500001350631.0000001.2500000.2500001326261.0000001.2500000.2500001350001.0000001.2500000.250000

计算rating的标准差,并选择最大的前10个:

# Standard deviation of rating grouped by placeIDrating_std_by_place = df.groupby('placeID')['rating'].std()# Filter down to active_titlesrating_std_by_place = rating_std_by_place.loc[active_place]# Order Series by value in descending orderrating_std_by_place.sort_values(ascending=False)[:10]

placeID134987 1.154701135049 1.000000134983 1.000000135053 0.991031135027 0.991031132847 0.983192132767 0.983192132884 0.983192135082 0.971825132706 0.957427Name: rating, dtype: float64

本文已收录于 http://www.flydean.com/02-pandas-restaurant/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

Copyright © 2016-2020 www.365daan.com All Rights Reserved. 365答案网 版权所有 备案号:

部分内容来自互联网,版权归原作者所有,如有冒犯请联系我们,我们将在三个工作时内妥善处理。