三消算法首要实现的就是找到所有三个或三个以上的同样颜色,所以我们思路是:判断每个点进行上下左右四个方向移动后,能得到三个及以上的相连。
经过分析,当我们向一个方向移动时,会有四种情况符合条件,所以当一个点符合消除时,需要判断周围点的情况共有16种!
例如:当红色圈向右移动一格能消除时,他周围的情况必然时图下四种状态:
1.与右边两个绿圈消除
2.与右上方两个蓝圈消除
3.与右下方两个黄圈消除
4.与右边上下各一个绿色正方形消除。
所以,我们的要做的是:
第一步:将图片转换成矩阵:
list_ = [["绿", "红", "红", "紫", "绿", "紫", "蓝"], ["紫", "紫", "绿", "黄", "绿", "蓝", "紫"], ["紫", "红", "紫", "红", "紫", "蓝", "黄"], ["蓝", "紫", "紫", "蓝", "黄", "紫", "绿"], ["红", "蓝", "绿", "紫", "黄", "蓝", "绿"]]
第二步:从上往下,从左往右,遍历每一个点,并且遍历它周围的特定位置,判断是否移动该点,能和周围的点结合实现消除。
用于算法计算的坐标轴:
第三步:代码实现:
list_ = [["绿", "红", "红", "紫", "绿", "紫", "蓝"], ["紫", "紫", "绿", "黄", "绿", "蓝", "紫"], ["紫", "红", "紫", "红", "紫", "蓝", "黄"], ["蓝", "紫", "紫", "蓝", "黄", "紫", "绿"], ["红", "蓝", "绿", "紫", "黄", "蓝", "绿"]]# 横坐标为x,纵坐标为ydef main_method(list_): for x in range(7): for y in range(5): # 获取该坐标点的颜色 c = list_[y][x] print(x, y, c) # 判断该坐标向右移是否满足(考虑越界问题,需判断坐标变换后是否在矩阵内) if ((y - 1) >= 0 and (x + 1) <= 6 and ( y + 1) <= 4 and list_[y - 1][x + 1] == c and list_[y + 1][x + 1] == c) or ( (x + 2) <= 6 and (x + 3) <= 6 and list_[y][x + 2] == c and list_[y][x + 3] == c) or ( (y - 1) >= 0 and (x + 1) <= 6 and ( y - 2) >= 0 and list_[y - 1][x + 1] == c and list_[y - 2][x + 1] == c) or ( (y + 1) <= 4 and (x + 1) <= 6 and ( y + 2) <= 4 and list_[y + 1][x + 1] == c and list_[y + 2][x + 1] == c): print("请将[%s,%s]右移" % (x, y)) return [x, y, '右移'] # 判断该坐标向左移是否满足 elif ((y - 1) >= 0 and (x - 1) >= 0 and ( y + 1) <= 4 and list_[y - 1][x - 1] == c and list_[y + 1][x - 1] == c) or ( (x - 2) >= 0 and (x - 3) >= 0 and list_[y][x - 2] == c and list_[y][x - 3] == c) or ( (y - 1) >= 0 and (x - 1) >= 0 and ( y - 2) >= 0 and list_[y - 1][x - 1] == c and list_[y - 2][x - 1] == c) or ( (y + 1) <= 4 and (x - 1) >= 0 and ( y + 2) <= 4 and list_[y + 1][x - 1] == c and list_[y + 2][x - 1] == c): print("请将[%s,%s]左移" % (x, y)) return [x, y, '左移'] # 判断该坐标向上移是否满足 elif ((y - 1) >= 0 and (x - 1) >= 0 and ( x + 1) <= 6 and list_[y - 1][x - 1] == c and list_[y - 1][x + 1] == c) or ( (y - 2) >= 0 and (y - 3) >= 0 and list_[y - 2][x] == c and list_[y - 3][x] == c) or ( (y - 1) >= 0 and (x - 1) >= 0 and ( x - 2) >= 0 and list_[y - 1][x - 1] == c and list_[y - 1][x - 2] == c) or ( (x + 1) <= 6 and (x + 2) <= 6 and ( y - 1) >= 0 and list_[y - 1][x + 1] == c and list_[y - 1][x + 2] == c): print("请将[%s,%s]上移" % (x, y)) return [x, y, '上移'] # 判断该坐标向下移是否满足 elif ((y + 1) <= 4 and (x - 1) >= 0 and ( x + 1) <= 6 and list_[y + 1][x - 1] == c and list_[y + 1][x + 1] == c) or ( (y + 2) <= 4 and (y + 3) <= 4 and list_[y + 2][x] == c and list_[y + 3][x] == c) or ( (y + 1) <= 4 and (x - 1) >= 0 and ( x - 2) >= 0 and list_[y + 1][x - 1] == c and list_[y + 1][x - 2] == c) or ( (x + 1) <= 6 and (x + 2) <= 6 and ( y + 1) <= 4 and list_[y + 1][x + 1] == c and list_[y + 1][x + 2] == c): print("请将[%s,%s]下移" % (x, y)) return [x, y, '下移'] else: print("不满足") continue return ['无有效移动']if __name__ == '__main__': main_method(list_)
运行结果:(起始坐标点为[0,0])