欢迎您访问365答案网,请分享给你的朋友!
生活常识 学习资料

【经典算法题-13】超长整数运算(大数运算)(c语言蓝桥杯算法)

时间:2023-04-30

欢迎关注公众号[搞前端的半夏],回复[算法],获取各种算法资料。

http://sylblog.xin/

说明

基于记忆体的有效运用,程式语言中规定了各种不同的资料型态,也因此变数所可以表达的最大整数受到限制,例如123456789123456789这样的 整数就不可能储存在long变数中(例如C/C++等),我们称这为long数,这边翻为超长整数(避免与资料型态的长整数翻译混淆),或俗称大数运算。

解法

一个变数无法表示超长整数,则就使用多个变数,当然这使用阵列最为方便,假设程式语言的最大资料型态可以储存至65535的数好了,为了计算方便及符合使用十进位制的习惯,让每一个阵列元素可以储存四个位数,也就是0到9999的数,例如:

很多人问到如何计算像50!这样的问题,解法就是使用程式中的乘法函式,至于要算到多大,就看需求了。

由于使用阵列来储存数值,关于数值在运算时的加减乘除等各种运算、位数的进位或借位就必须自行定义,加、减、乘都是由低位数开始运算,而除法则是由高位数开始运算,这边直接提供加减乘除运算的函式供作参考,以下的N为阵列长度。

void add(int *a, int *b, int *c) { int i, carry = 0; for(i = N - 1; i >= 0; i--) { c[i] = a[i] + b[i] + carry; if(c[i] < 10000) carry = 0; else { // 进位 c[i] = c[i] - 10000; carry = 1; } } } void sub(int *a, int *b, int *c) { int i, borrow = 0; for(i = N - 1; i >= 0; i--) { c[i] = a[i] - b[i] - borrow; if(c[i] >= 0) borrow = 0; else { // 借位 c[i] = c[i] + 10000; borrow = 1; } } } void mul(int *a, int b, int *c) { // b 为乘数 int i, tmp, carry = 0; for(i = N - 1; i >=0; i--) { tmp = a[i] * b + carry; c[i] = tmp % 10000; carry = tmp / 10000; } } void div(int *a, int b, int *c) { // b 为除数 int i, tmp, remain = 0; for(i = 0; i < N; i++) { tmp = a[i] + remain; c[i] = tmp / b; remain = (tmp % b) * 10000; } }

Copyright © 2016-2020 www.365daan.com All Rights Reserved. 365答案网 版权所有 备案号:

部分内容来自互联网,版权归原作者所有,如有冒犯请联系我们,我们将在三个工作时内妥善处理。