在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。 [1]
探索性数据分析
探索性数据分析是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国著名统计学家约翰·图基(John Tukey)命名。 [1]
定性数据分析
定性数据分析又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析。 [1]
离线数据分析
离线数据分析用于较复杂和耗时的数据分析和处理,一般通常构建在云计算平台之上,如开源的HDFS文件系统和MapReduce运算框架。Hadoop机群包含数百台乃至数千台服务器,存储了数PB乃至数十PB的数据,每天运行着成千上万的离线数据分析作业,每个作业处理几百MB到几百TB甚至更多的数据,运行时间为几分钟、几小时、几天甚至更长。 [1]
在线数据分析
在线数据分析也称为联机分析处理,用来处理用户的在线请求,它对响应时间的要求比较高(通常不超过若干秒)。与离线数据分析相比,在线数据分析能够实时处理用户的请求,允许用户随时更改分析的约束和限制条件。与离线数据分析相比,在线数据分析能够处理的数据量要小得多,但随着技术的发展,当前的在线分析系统已经能够实时地处理数千万条甚至数亿条记录。传统的在线数据分析系统构建在以关系数据库为核心的数据仓库之上,而在线大数据分析系统构建在云计算平台的NoSQL系统上。如果没有大数据的在线分析和处理,则无法存储和索引数量庞大的互联网网页,就不会有当今的高效搜索引擎,也不会有构建在大数据处理基础上的微博、博客、社交网络等的蓬勃发展。 [4]