1、参数设置 
以下参数都必须/建议设置上1.订阅的主题2.反序列化规则3.消费者属性-集群地址4.消费者属性-消费者组id(如果不设置,会有默认的,但是默认的不方便管理)5.消费者属性-offset重置规则,如earliest/latest…6.动态分区检测(当kafka的分区数变化/增加时,Flink能够检测到!)7.Checkpoint会把offset随着做Checkpoint的时候提交到Checkpoint和默认主题中————————————————
 2、参数说明   3、kafka的水印策略  4、kafka动态发现分区、主题 
//正则匹配动态发现主题    Properties properties = new Properties();    properties.setProperty("bootstrap.servers",kafka_server_dev);    properties.setProperty("group.id","testtttt");    Pattern topicPattern = Pattern.compile("topic[0-9]]"); // topic设置成正则匹配    FlinkKafkaConsumerbase kafkaDataPattern = new FlinkKafkaConsumer<>(        topicPattern,        new SimpleStringSchema(),        properties    ).setStartFromEarliest();//动态发现分区properties.setProperty("FlinkKafkaConsumerbase.KEY_PARTITION_DISCOVERY_INTERVAL_MILLIS",30*1000+"");
 5、指定分区偏移量开始消费 
String topic = "odsEventDetail";String groupId = "console-con-new-offline-final";        //指定分区的偏移量开始消费Map specificStartOffsets = new HashMap<>();specificStartOffsets.put(new KafkaTopicPartition("myTopic", 0), 23L);specificStartOffsets.put(new KafkaTopicPartition("myTopic", 1), 31L);specificStartOffsets.put(new KafkaTopicPartition("myTopic", 2), 43L);//        myConsumer.setStartFromSpecificOffsets(specificStartOffsets);FlinkKafkaConsumerbase kafkaSource = MyKafkaUtil.getKafkaSource_ObjectNode(topic, groupId)                .setStartFromSpecificOffsets(specificStartOffsets);//                .setStartFromEarliest();        DataStreamSource kafkaDS = env.addSource(kafkaSource);
 6、设置空闲等待 
//kafka单分区有序,多分区无序。StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        Properties properties = new Properties();        properties.setProperty("bootstrap.servers","");        properties.setProperty("group.id","");        FlinkKafkaConsumer kafkaData = new FlinkKafkaConsumer<>(                "flinktest",                new SimpleStringSchema(),                properties        );//当数据许久没来时,是否需要设置watermark,此处可以设置一个空闲等待时间        kafkaData.assignTimestampsAndWatermarks(                (AssignerWithPeriodicWatermarks) WatermarkStrategy                        .forBoundedOutOfOrderness(Duration.ofMinutes(2)) //从数据源生成watermark                        .withIdleness(Duration.ofMinutes(5)) //设置空闲等待        );