欢迎您访问365答案网,请分享给你的朋友!
生活常识 学习资料

PyTorch深度学习笔记(十四)神经网络-搭建小实战和Sequential的使用

时间:2023-05-16

课程学习笔记,课程链接

Sequential 是一个时序容器。Modules 会以他们传入的顺序被添加到容器中。包含在 PyTorch 官网中 torch.nn 模块中的 Containers 中,在神经网络搭建的过程中如果使用 Sequential,代码更简洁。

搭建上述神经网络的具体代码如下。

import torchfrom torch import nnfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear​class Jiaolong(nn.Module):   def __init__(self):       super(Jiaolong, self).__init__()       self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2)       self.maxpool1 = MaxPool2d(kernel_size=2)       self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2)       self.maxpool2 = MaxPool2d(kernel_size=2)       self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2)       self.maxpool3 = MaxPool2d(kernel_size=2)       self.flatten = Flatten()       self.linear1 = Linear(1024, 64)       self.linear2 = Linear(64, 10)​   def forward(self, x):       x = self.conv1(x)       x = self.maxpool1(x)       x = self.conv2(x)       x = self.maxpool2(x)       x = self.conv3(x)       x = self.maxpool3(x)       x = self.flatten(x)       x = self.linear1(x)       x = self.linear2(x)       return x​jiaolong = Jiaolong()print(jiaolong)input = torch.ones((64, 3, 32, 32)) # 指定数据创建的形状,都是1output = jiaolong(input)print(output.shape)

现以Sequential搭建上述一模一样的神经网络,并借助tensorboard显示计算图的具体信息。

import torchfrom torch import nnfrom torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequentialfrom torch.utils.tensorboard import SummaryWriter​class Jiaolong(nn.Module):    def __init__(self):        super(Jiaolong, self).__init__()        self.model1 = Sequential(            Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),            MaxPool2d(kernel_size=2),            Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),            MaxPool2d(kernel_size=2),            Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),            MaxPool2d(kernel_size=2),            Flatten(),            Linear(1024, 64),            Linear(64, 10)       )​    def forward(self, x):        x = self.model1(x)        return x​jiaolong = Jiaolong()# print(jiaolong)input = torch.ones((64, 3, 32, 32))  # 指定数据创建的形状,都是1output = jiaolong(input)# print(output.shape)​writer = SummaryWriter("logs")writer.add_graph(jiaolong, input)  # 计算图writer.close()

在 Tensorboard 中查看计算图结果如下:

Copyright © 2016-2020 www.365daan.com All Rights Reserved. 365答案网 版权所有 备案号:

部分内容来自互联网,版权归原作者所有,如有冒犯请联系我们,我们将在三个工作时内妥善处理。