欢迎您访问365答案网,请分享给你的朋友!
生活常识 学习资料

python数学建模模板

时间:2023-05-25
python数学建模模板

工具使用模板部分算法模板 工具使用模板

# -*- coding: utf-8 -*-# @Time : 2021/9/5 15:03# @Author : hzh# @File : good_tools.py# @Software : PyCharmimport matplotlib.pyplot as pltimport mathimport numpy as npimport numpy.linalg as LAfrom sympy import *import sympy as spimport scipyfrom scipy.integrate import quadfrom scipy.optimize import fsolve,fminbound,fmin,minimizefrom scipy.optimize import linprog,curve_fitfrom sklearn.preprocessing import minmax_scale,scaleimport matplotlib.pyplot as pltimport cvxpy as cp# 1.sympy数学符号计算def fuhaojisuan(): #1.如果要引入变量 可以用 x,y,z=symbols('x y z') #2.然后定义表达式 expr1 = y**2+sin(y)*cos(x)+sin(z) #3.输出表达式 print("expr1=",expr1) #4.带入特值 print("x=1,y=1,z=1时,expr1=",expr1.subs({x:1,y:1,z:1})) #5.Sympy做符号函数画图参见P91 #6.求极限 print(limit(sin(x)/x,x,0)) print(limit(pow(1+1/x,x),x,oo)) #7.求导数 z = sin(x)+x**2*exp(y) print("关于x的二阶偏导数为",diff(z,x,2)) #8.验证级数的求和 k,n= symbols('k n') print(summation(k**2,(k,1,n))) print(factor(summation(k**2,(k,1,n)))) print(summation(1/k**2,(k,1,oo))) #9.泰勒展开 y = sin(x) for k in range(3,8,2): print(y.series(x,0,k)) plot(y,series(y,x,0,3).removeO(),series(y,x,0,5).removeO(),series(y,x,0,7).removeO(),(x,0,2),xlabel='x',ylabel='y') #10.不定积分和定积分 print(integrate(sin(2*x),(x,0,pi))) print(integrate(sin(x)/x,(x,0,oo))) #11.求解代数方程(方程组)符号解 x,y=symbols('x y') print(solve(x**3-1,x)) print(solve((x-2)**2*(x-1)**3,x)) print(roots((x-2)**2*(x-1)**3,x))#roots可以得到重根的信息 print(solve([x**2+y**2-1,x-y],[x,y]))#求解方程组用列表 #12.求微分方程的符号解(验证我们的微分方程有没有解错) x = symbols('x') y = symbols('y',cls=Function) eq1 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)#y"-5y'+6y=0 eq2 = diff(y(x),x,2)-5*diff(y(x),x)+6*y(x)-x*exp(2*x) print("齐次方程的解为:",dsolve(eq1,y(x))) print("非齐次方程的解为:",dsolve(eq2,y(x)))# 2.数值计算def shuzhijisuan(): #1.数值导数 def diff(f, dx=1E-8):#求一次导数 return lambda x: (f(x + dx) - f(x - dx)) / (2 * dx) def diff2(f, dx=1E-8):#求二次导数推导过程见P99 return lambda x: (f(x + dx) + f(x - dx) - f(x) * 2) / (dx * dx) #2.数值积分 #法一:定义梯形公式的函数 def trapezoid(f,n,a,b): xi = np.linspace(a,b,n) h = (b-a)/(n-1) return h*(np.sum(f(xi))-(f(a)+f(b))/2) #法二:定义辛普森公式的函数 def simpson(f,n,a,b): xi,h =np.linspace(a,b,2*n+1),(b-a)/(2.0*n) xe = [f(xi[i]) for i in range(len(xi)) if i%2==0] xo = [f(xi[i]) for i in range(len(xi)) if i%2!=0] return h*(2*np.sum(xe)+4*np.sum(xo)-f(a)-f(b))/3.0 a=0;b=1;n=1000 f=lambda x:np.sin(np.sqrt(np.cos(x)+x**2)) print("梯形法求得的积分为:",trapezoid(f,n,a,b)) print("辛普森公式法求得的积分为:",simpson(f,n,a,b)) #法三;使用scipy.integrate.quad模块函数 print("Scipy求得的积分为:",quad(f,a,b)) #3.非线性方程(组)数值解 #法一:二分法求根 def binary_search(f, eps, a, b): c = (a + b) / 2 while np.abs(f(c)) > eps: if f(a) * f(c) < 0: b = c else: a = c c = (a + b) / 2 return c #法二:牛顿迭代法求根 def newton_iter(f, eps, x0, dx=1E-8): def diff(f, dx=dx): return lambda x: (f(x + dx) - f(x - dx)) / (2 * dx) df = diff(f, dx) x1 = x0 - f(x0) / df(x0) while np.abs(x1 - x0) >= eps: x1, x0 = x1 - f(x1) / df(x1), x1 return x1 f=lambda x:x**3+1.1*x**2+0.9*x-1.4 print("二分法求得的根为:",binary_search(f,1E-6,0,1)) print("牛顿迭代法求得的根为:",newton_iter(f,1E-6,0)) #法三:直接调用scipy.optimize.fsolve print("直接调用Scipy求得的根为:",fsolve(f,0)) #4.求一元函数的极值点 f=lambda x:np.exp(x)*np.cos(2*x) x0 = fminbound(f,0,3)#求区间[0,3]上的最小值 print("fminbound求得的极小点为:{},极小值为:{}".format(x0,f(x0))) x0 = fmin(f,0)#求0附近的一个极小值点 print("fmin求得的极小点为:{},极小值为:{}".format(x0,f(x0))) #5.多元函数的极值点 f=lambda x:100*(x[1]-x[0]**2)**2+(1-x[0])**2 x0 = minimize(f,[2.0,2.0])#求(2,2)附近的极小值 print("minimize求得的极小点为:{},极小值为:{}".format(x0.x,x0.fun))# 3.线性代数def xianxingdaishu(): #1.矩阵的运算,sympy符号形式使用 A=sp.Matrix([[1],[2],[3]]) B=sp.Matrix([[4],[5],[6]]) print("A的模为:",A.norm()) print("A的模的浮点数为:",A.norm().evalf()) print("A的转置矩阵为:",A.T) print("A和B的点乘为:",A.dot(B)) print("A和B的叉乘为:",A.cross(B)) A = sp.Matrix(np.arange(1,17).reshape(4,4)) B = sp.eye(4)#单位矩阵 print("A的行列式为:",sp.det(A)) print("A的秩为:",A.rank()) print("A的转置矩阵为:",A.transpose()) print("A+B的逆矩阵为:",(A+B).inv()) print("A的平方为:",A**2) print("A,B的乘积为:",A*B) print("横连矩阵为:",A.row_join(B)) print("纵连矩阵为:",A.col_join(B)) print("A1为",A[0:2,0:2]) A2=A.copy() A2.row_del(3) print("A2为",A2) print("A的行最简形以及所在的列为:n",A.rref()) print("A的特征值为:",A.eigenvals()) print("A的特征向量为:",A.eigenvects()) #2.矩阵的运算,numpy数值形式使用,大多数用这个 a=np.arange(1,4) b=np.arange(4,7) print("a的二范数为:",np.linalg.norm(a)) print("a点乘b=",a.dot(b)) print("a,b的内积=",np.inner(a,b)) print("a叉乘b=",np.cross(a,b)) A = np.arange(1,17).reshape(4,4) B = np.eye(4)#单位矩阵 print("A的行列式为:",np.linalg.det(A)) print("A的秩为:",np.linalg.matrix_rank(A)) print("A的转置矩阵为:",A.transpose())#等价于A.T print("A+B的逆矩阵为:",np.linalg.inv(A+B)) print("A的平方为:",A.dot(A)) print("A,B的乘积为:",A.dot(B)) print("横连矩阵为:",np.c_[A,B])#与sympy的c,r相反 print("纵连矩阵为:",np.r_[A,B]) print("A1为:n",A[0:2,0:2]) A2=A.copy() A2=np.delete(A2,3,axis=0)#删除第四行,axis=0表示沿行增加的轴方向 print("A2为:n",A2) A = np.array([[1,-5,2,-3],[5,3,6,-1],[2,4,2,1]]) print("A的零空间(即基础解系)为:",scipy.linalg.null_space(A)) A = np.array([[0,-2,2],[-2,-3,4],[2,4,3]]) values,vectors=np.linalg.eig(A) print("A的特征值为:",values) print("A的特征向量为:",vectors)# 4.线性/非线性规划def guihua(): #1.使用scipy.optimize.linprog解线性规划 #scipy中线性规划的标准形为 # min z = c.T*x # A*x <= b # Aeq *x = beq # Lb<=x<=UB def biaozhun(c,A,b,Aeq,beq,Lb,Ub): bounds = tuple(zip(Lb,Ub)) res = linprog(c,A,b,Aeq,beq,bounds)#默认每个决策变量的下界为0,上界为正无穷 # res = linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,bounds=None, method='interior-point', callback=None,options=None, x0=None)#默认有的方法 print(res.fun)#显示目标函数的最小值 print(res.x)#显示最优解 print(res.slack)#为0时说明是紧约束,即约束条件实际上是等式约束,用于判断是否在边界取得极值 #python灵敏度分析做的不好,求参数变化时一般要带入模型重新计算 #2.整数规划有关的,推荐使用cvxpy模块 import cvxpy as cp 详细见P199 c = np.array([[4,8,7,15,12],[7,9,17,14,10],[6,9,12,8,7],[6,7,12,8,7],[6,9,12,10,6]]) x = cp.Variable((5,5),integer=True) obj = cp.Minimize(cp.sum(cp.multiply(c,x))) con = [0<=x,x<=1,cp.sum(x,axis=0,keepdims=True)==1,cp.sum(x,axis=1,keepdims=True)==1] prob = cp.Problem(obj,con) prob.solve(solver='GLPK_MI') print("最优值为:",prob.value) print("最优解为:n",x.value) #3.非整数非线性规划:使用scipy.optimize.minimize函数求解 #例题详细见P206 def obj2(x): x1,x2,x3 =x return (2+x1)/(1+x2)-3*x1+4*x3 LB=[0.1]*3 UB=[0.9]*3 bound = tuple(zip(LB,UB)) res = minimize(obj2,np.ones(3),bounds = bound) print(res.fun,'n',res.success,'n',res.x) #输出最优值,求解状态,最优解 #P209的飞行管理例题很精彩值得看# 5.插值def chazhi(): #1.拉格朗日插值 # x,y是两个具有相同长度的Numpy数组 def h(x,y,a): s = 0.0 for i in range(len(y)): t = y[i] for j in range(len(y)): if i!=j: t*=(a-x[j])/(x[i]-x[j]) s += t return s #2.其余插值见P216 分段线性插值,分段二次插值,牛顿插值,样条插值 #3.scipy.interpolate实现插值 #一维插值 from scipy.interpolate import interp1d x = np.arange(0,25,2) y = np.array([12,9,9,10,18,24,28,27,25,20,18,15,13]) xnew = np.linspace(0,24,500) f1 = interp1d(x,y) y1 = f1(xnew) f2 = interp1d(x,y,'cubic') y2 = f2(xnew) plt.subplot(121) plt.plot(xnew,y1) plt.subplot(122) plt.plot(xnew,y2) plt.savefig("figure1.png",dpi=500) plt.show() #二维插值:同理使用interp2d或griddate #明天写# 6.拟合def nihe(): #1.线性采用最小二乘拟合 def two_match(X, Y): return np.pinv(X * X.T) * X.T * Y #2.非线性的拟合方式 #选择相对合适的拟合函数f #将函数f带入代价函数中,形成非线性函数的极小化问题 #调用 scipy.optimize.curve_fit函数 y = lambda x,a,b,c:a*x**2+b*x+c x0 = np.arange(0,1.1,0.1) y0 = np.array([-0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.30,11.2]) popt,pcov = curve_fit(y,x0,y0) print("拟合的参数值为:",popt) print("预测值分别为:",y(np.array([0.25,0.35]),*popt))# 7.多元分析def duoyuan(): #1.求某一类样本的均值向量和离差矩阵 def get_uL(a): n,m = a.shape u = np.sum(a,axis = 0)/n L = np.zeros((n,m)) for i in range(n): L = L+(a[i,:]-u)*(a[i,:]-u).T return u,L a = np.array([[1,2,3],[4,5,6],[7,8,9]]) print(get_uL(a)) # 2.矩阵/特征向量 标准正交化 def orthonormalization(a): b = np.zeros(a.shape) for i in range(len(a)): b[i] = a[i] for j in range(0, i): b[i] -= np.dot(a[i], b[j]) / np.dot(b[j], b[j]) * b[j] for i in range(len(b)): b[i] = b[i] / np.sqrt(np.dot(b[i], b[i])) return b # 3.主成分分析(降低维度,减少变量个数) a是输入的样本n*m的数据,lada是要求的积累贡献率 def myPCA(a, lada=0.85): b = scale(a) n, m = b.shape r = np.zeros((m, m)) for i in range(m): for j in range(m): # print(b[:,i],'n',b[:,j],'n',i,j) r[i, j] = b[:, i].T @ b[:, j] / n e, u = LA.eig(r) u = orthonormalization(u) print(r, 'n', e, 'n', u) sum = np.sum(e) * lada x = 0 for i in range(len(e)): # 保留主要的维度 x = x + e[i] if x >= sum: e = e[:i + 1] u = u[:i + 1, :] break print(e, 'n', u, 'n') return r, e, u # 4.因子分析(分解为若干因子的线性组合,找出不同变量的公共因子)(就是用新的意义的变量来表示原来的变量) def factor_analysis(a, lada=0.85): r, e, u = myPCA(a, lada) # 利用主成分分析得到 相关系数矩阵,及其特征值和特征向量 # print(e,'n',u) e = np.sqrt(e) print(e) A = np.array([np.array(e[i] * u[i, :]) for i in range(len(e))]).T # 求因子载荷矩阵 d = np.diagonal(r - A @ A.T) # 估计特殊因子的方差 print(A, 'n', d) return A, d# 8.灵敏度分析def lingming(): X = np.array( [[1, 7, 26], [1, 1, 29], [1, 11, 56], [1, 11, 51], [1, 7, 52], [1, 11, 55], [1, 3, 71], [1, 1, 31], [1, 2, 54], [1, 21, 47], [1, 1, 40], [1, 11, 66], [1, 10, 68]]) Y = np.array([78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4]).T # 1.最小二乘得到b,y n, m = X.shape def two_match(X, Y): return LA.pinv(X.T @ X) @ X.T @ Y b = two_match(X, Y) y = X @ b # 2.回归方程显著性检验 def xianzhuxin(X,Y,y): def get_sse(Y, y): return np.sum(np.multiply(Y - y, Y - y)) def get_sst(Y): u = np.sum(Y) / n return np.sum(np.multiply(Y - u, Y - u)) def get_ssr(Y, y): u = np.sum(Y) / n return np.sum(np.multiply(y - u, y - u)) sse = get_sse(Y,y) sst = get_sst(Y) ssr = sst-sse#这两种方法一样 ssr = get_ssr(Y,y) F = (ssr/m)/(sse/(n-m-1)) from scipy.stats import f alpha = 0.05 sa=f.isf(q=alpha, dfn=m, dfd=n-m-1)#sa为上a分位 # print(b,F,sa,F>sa) return F= np.random.rand(1): s = s0 T = T * af return s, cost(s) # 2.遗传算法 s为初始种群,以列表的形式保存各个个体,各个个体又以列表的形式保存各自参数,cost为s对环境的适应度,越小越适应,change为s中期交叉与随机变异的方式,G为进化的代数 def genetic(s, cost, change, G=10): n = len(s) for g in range(G): s0 = change(s) w0 = [cost(i) for i in s0] x = np.argsort(w0) s = s0[x[:n]] return s[0], cost[s[0]]if __name__ == '__main__': lingming()

部分算法模板

# -*- coding: utf-8 -*-# @Time : 2021/9/4 15:02# @Author : hzh# @File : model.py# @Software : PyCharmimport matplotlib.pyplot as pltimport pandas as pdimport mathimport numpy as npfrom numpy.linalg import *from matplotlib.pyplot import *from sklearn.preprocessing import minmax_scale,scale#1.读取2020年A题附件,返回第一列和第二列组合元素(x,y)的元素为元组的列表def read(): data = pd.read_excel("附件.xlsx",header=None)#可以用参数usecols选择提取哪些列,更多详细见P60 data = data.values#提取其中的数据为ndarray的形式 return tuple(zip(list(data[0])[1:],list(data[1])[1:]))#2.画折现图,并做相关处理def plot_line_pic(x,y1,y2,x_label='时间/s',y_label={'温度/℃'},mytitle='电路板炉温曲线',label1 = '原始数据',label2 = '拟合曲线'): rc('font',size=16) # re('text',usetex=True)#安装了Latex的两个宏包才可以使用,没有就注释掉 rc('font',family='SimHei') plot(x,y1, '--b',label = label1,linewidth=1.6, markeredgecolor='k', markersize=8) plot(x, y2, '--r',label = label2,linewidth=1.6, markeredgecolor='k', markersize=8) xlabel(x_label, fontweight='bold', fontsize=12) ylabel(y_label, fontweight='bold', fontsize=12) title(mytitle, fontweight='bold', fontsize=12) legend() plt.savefig('figure1.png') show()#3.保存数据到csv,x是向量列表[x1,x2...],y是列表[y1,y2,...],保存为两列的数据def savedata(x,y): pdata = pd.Dataframe(np.vstack((np.array(x),np.array(y))).T,columns = ['时间(s)','温度(摄氏度)']) pdata.to_csv('Result1.csv', index = 0,encoding='utf_8_sig')#每行前面索引要去掉,中文显示编码#4.二分法求根,f为函数,eps为允许的误差,a,b为根的所在区间def binary_search(f,eps,a,b): c = (a+b)/2 while np.abs(f(c))>eps: if f(a)*f(c)<0: b=c else : a=c c = (a+b)/2 return c#求数值导数的函数def diff(f,dx=1E-8): return lambda x:(f(x+dx)-f(x-dx))/(2*dx)#5.牛顿迭代法求根,f为函数,eps为允许的误差,求x0附近的零点def newton_iter(f,eps,x0,dx=1E-8): def diff(f, dx = dx): return lambda x: (f(x + dx) - f(x - dx)) / (2 * dx) df = diff(f,dx) x1 = x0-f(x0)/df(x0) while np.abs(x1-x0)>=eps: x1,x0 = x1 - f(x1)/df(x1),x1 return x1#6.矩阵规格化def normalization1(a): # amax = np.argmax(a)#最大值下标索引,暂时没用 amax = np.max(a,axis=0)#按行获取最大值 amax = np.tile(amax,(a.shape[0],1))#扩展成n*m大小 amin = np.min(a,axis=0)#按行获取最小值 amin = np.tile(amin,(a.shape[0],1)) b = (a-amin)/(amax-amin) b1 = minmax_scale(a)#调用函数规格化 print(amax,'n',amin,'n',b,'nn',b1) return b#可参考P265#7.矩阵标准化def normalization2(a): n = a.shape[0] u = np.sum(a,axis=0)/n u = np.tile(u,(n,1)) s = np.sqrt(np.sum(np.multiply(a-u,a-u),axis=0)/(n-0)) s = np.tile(s,(n,1)) b = (a-u)/s b1 = scale(a,axis=0)#调用函数标准化 print(u,'n',s,'n',b,'n',b1) return b#8.检验级比是否符合使用灰色GM(1,1)标准def check_gray11(x): n = len(x) jibi = x[:-1]/x[1:] #求级比 bd1 = [jibi.min(),jibi.max()] #求级比的范围 bd2 = [np.exp(-2/(n+1)),np.exp(2/n+1)] if bd2[0]<=bd1[0] and bd1[1]<=bd2[1]:return True else:return False#9.最小二乘拟合 XA=Y 求Adef two_match(X, Y): return np.linalg.pinv(X.T @ X) @ X.T @ Y#10.模拟退火求最小值,s为初始状态,以列表的形式保存各个参数,cost为s的代价,越小越好,change为改变s状态的方式,T是温度,af是降温系数,esp是结束条件def GASA(s,cost,change,T=1,af=0.999,esp = 0.1**30): while(T=np.random.rand(1): s = s0 T = T*af return s,cost(s)#11.遗传算法 s为初始种群,以列表的形式保存各个个体,各个个体又以列表的形式保存各自参数,cost为s对环境的适应度,越小越适应,change为s中期交叉与随机变异的方式,G为进化的代数def genetic(s,cost,change,G=10): n = len(s) for g in range(G): s0 = change(s) w0 = [cost(i) for i in s0] x = np.argsort(w0) s = s0[x[:n]] return s[0],cost[s[0]]#12.熵值法 (根据评价矩阵对系统整体的影响来确定指标权重系数)def entropy(b): n = b.shape[0] cs = b.sum(axis=0)#逐列求和 p = 1/cs*b e = -(p*np.log(p)).sum(axis=0)/np.log(n)#计算熵值 g = 1-e w = g/sum(g)#计算权重 F = p@w return F#13.主成分分析(降低维度,减少变量个数) a是输入的样本n*m的数据,lada是要求的积累贡献率def myPCA(a,lada=0.85): b = scale(a) n,m = b.shape r = np.zeros((m,m)) for i in range(m): for j in range(m): # print(b[:,i],'n',b[:,j],'n',i,j) r[i,j] = b[:,i].T@b[:,j]/n e,u = eig(r) u = orthonormalization(u) print(r,'n',e,'n',u) sum = np.sum(e)*lada x = 0 for i in range(len(e)):#保留主要的维度 x = x+e[i] if x>=sum: e = e[:i+1] u = u[:i+1,:] break print(e,'n',u,'n') return r,e,u#14.矩阵/特征向量 标准正交化def orthonormalization(a): b = np.zeros(a.shape) for i in range(len(a)): b[i] = a[i] for j in range(0, i): b[i] -= np.dot(a[i], b[j]) / np.dot(b[j], b[j]) * b[j] for i in range(len(b)): b[i] = b[i] / np.sqrt(np.dot(b[i], b[i])) return b#15.因子分析(分解为若干因子的线性组合,找出不同变量的公共因子)(就是用新的意义的变量来表示原来的变量)def factor_analysis(a,lada=0.85): r,e,u= myPCA(a,lada)#利用主成分分析得到 相关系数矩阵,及其特征值和特征向量 # print(e,'n',u) e = np.sqrt(e) print(e) A = np.array([np.array(e[i]*u[i,:]) for i in range(len(e))]).T#求因子载荷矩阵 d = np.diagonal(r-A@A.T)#估计特殊因子的方差 print(A,'n',d) return A,dif __name__ == '__main__': # a = np.matrix([[123,324,234,5,23],[2352,321,23,324,523],[235,26,89,7687,223],[3215,236,23,3461,234]]) # print(type(a),a) # X_train = np.array([[1., 1., 100.],[10., 1., 1.],[1., 1., 1.]]) a2 = np.array([[149.5,69.5,38.5],[162.5,77,55.5],[162.7,78.5,50.8],[162.2,87.5,65.5],[156.5,74.5,49.0], [156.1,74.5,45.5],[172.0,76.5,51.0],[173.2,81.5,59.5],[159.5,74.5,43.5],[157.7,79,53.5]]) x = [1,2,3] y1 = [1,2,3] y2 = [3,4,5] plot_line_pic(x,y1,y2) # normalization2(X_train)

Copyright © 2016-2020 www.365daan.com All Rights Reserved. 365答案网 版权所有 备案号:

部分内容来自互联网,版权归原作者所有,如有冒犯请联系我们,我们将在三个工作时内妥善处理。