目录
幂等性
概念
消息重复消费
解决思路
消费端的幂等性保障
唯一 ID+指纹码机制
Redis 原子性
优先级队列
使用场景
如何设置优先级?
消息生产者
消费者
惰性队列
使用场景
两种模式
内存开销对比
幂等性 概念
用户对于同一操作发起的一次请求或者多次请求的结果是一致的,不会因为多次点击而产生了副作用。 举个最简单的例子,那就是支付,用户购买商品后支付,支付扣款成功,但是返回结果的时候网络异常, 此时钱已经扣了,用户再次点击按钮,此时会进行第二次扣款,返回结果成功,用户查询余额发现多扣钱 了,流水记录也变成了两条。在以前的单应用系统中,我们只需要把数据操作放入事务中即可,发生错误 立即回滚,但是再响应客户端的时候也有可能出现网络中断或者异常等等
消息重复消费
消费者在消费 MQ 中的消息时,MQ 已把消息发送给消费者,消费者在给 MQ 返回 ack 时网络中断, 故 MQ 未收到确认信息,该条消息会重新发给其他的消费者,或者在网络重连后再次发送给该消费者,但 实际上该消费者已成功消费了该条消息,造成消费者消费了重复的消息。
解决思路
MQ 消费者的幂等性的解决一般使用全局 ID 或者写个唯一标识比如时间戳 或者 UUID 或者订单消费 者消费 MQ 中的消息也可利用 MQ 的该 id 来判断,或者可按自己的规则生成一个全局唯一 id,每次消费消 息时用该 id 先判断该消息是否已消费过。
消费端的幂等性保障
在海量订单生成的业务高峰期,生产端有可能就会重复发生了消息,这时候消费端就要实现幂等性,这就意味着我们的消息永远不会被消费多次,即使我们收到了一样的消息。业界主流的幂等性有两种操作:a、唯一 ID+指纹码机制,利用数据库主键去重, b.利用 redis 的原子性去实现
唯一 ID+指纹码机制
指纹码:我们的一些规则或者时间戳加别的服务给到的唯一信息码,它并不一定是我们系统生成的,基 本都是由我们的业务规则拼接而来,但是一定要保证唯一性,然后就利用查询语句进行判断这个 id 是否存 在数据库中,优势就是实现简单就一个拼接,然后查询判断是否重复;劣势就是在高并发时,如果是单个数据库就会有写入性能瓶颈,当然也可以采用分库分表提升性能,但也不是我们最推荐的方式。
Redis 原子性
利用 redis 执行 setnx 命令,天然具有幂等性。从而实现不重复消费
优先级队列 使用场景
比如我们在发布一些重要通知时,优先推送给VIP用户,可以使用优先级队列
如何设置优先级? 消息生产者
public class producer { private static final String QUEUE_NAME = "hello"; public static void main(String[] args) throws Exception { //创建一个连接工厂 ConnectionFactory factory = new ConnectionFactory(); //设置工厂的IP,连接RabbitMQ的队列 factory.setHost("192.168.31.65"); //设置用户名 factory.setUsername("admin"); //密码 factory.setPassword("123"); //创建连接 Connection connection = factory.newConnection(); //获取信道 Channel channel = connection.createChannel(); //给消息赋予一个 priority 属性 AMQP.BasicProperties properties = new AMQP.BasicProperties().builder().priority(5).build(); for (int i = 1; i < 11; i++) { String message = "info" + i; if (i == 5) { channel.basicPublish("", QUEUE_NAME, properties, message.getBytes()); } else { channel.basicPublish("", QUEUE_NAME, null, message.getBytes()); } System.out.println("发送消息完成:" + message); } }}
消费者
public class customer { private static final String QUEUE_NAME = "hello"; public static void main(String[] args) throws Exception { //创建一个连接工厂 ConnectionFactory factory = new ConnectionFactory(); //设置工厂的IP,连接RabbitMQ的队列 factory.setHost("192.168.31.65"); //设置用户名 factory.setUsername("admin"); //密码 factory.setPassword("123"); //创建连接 Connection connection = factory.newConnection(); //获取信道 Channel channel = connection.createChannel(); //设置队列的最大优先级 最大可以设置到 255 官网推荐 1-10 如果设置太高比较吃内存和 CPU Map
惰性队列 使用场景
RabbitMQ 从 3.6.0 版本开始引入了惰性队列的概念。惰性队列会尽可能的将消息存入磁盘中,而在消 费者消费到相应的消息时才会被加载到内存中,它的一个重要的设计目标是能够支持更长的队列,即支持 更多的消息存储。当消费者由于各种各样的原因(比如消费者下线、宕机亦或者是由于维护而关闭等)而致 使长时间内不能消费消息造成堆积时,惰性队列就很有必要了。
默认情况下,当生产者将消息发送到 RabbitMQ 的时候,队列中的消息会尽可能的存储在内存之中, 这样可以更加快速的将消息发送给消费者。即使是持久化的消息,在被写入磁盘的同时也会在内存中驻留 一份备份。当 RabbitMQ 需要释放内存的时候,会将内存中的消息换页至磁盘中,这个操作会耗费较长的 时间,也会阻塞队列的操作,进而无法接收新的消息。虽然 RabbitMQ 的开发者们一直在升级相关的算法, 但是效果始终不太理想,尤其是在消息量特别大的时候。
两种模式
队列具备两种模式:default 和 lazy。默认的为 default 模式,在 3.6.0 之前的版本无需做任何变更。lazy 模式即为惰性队列的模式,可以通过调用 channel.queueDeclare 方法的时候在参数中设置,也可以通过 Policy 的方式设置,如果一个队列同时使用这两种方式设置的话,那么 Policy 的方式具备更高的优先级。 如果要通过声明的方式改变已有队列的模式的话,那么只能先删除队列,然后再重新声明一个新的。
在队列声明的时候可以通过“x-queue-mode”参数来设置队列的模式,取值为“default”和“lazy”。下面示 例中演示了一个惰性队列的声明细节:
Map
内存开销对比
在发送 1 百万条消息,每条消息大概占 1KB 的情况下,普通队列占用内存是 1.2GB,而惰性队列仅仅 占用 1.5MB