量化投资好做吗,这份工作有多难?
量化投资在前些年应该就有公募基金在研究,但一直不瘟不火,也没多少产品推出来,直到2014年后才逐渐火起来,量化投资大致经历了下面几个阶段:1、2010年推出股指期货之前,量化投资体现不出优势,研究的人应该很少。2、2010年--2013年,大盘处于熊市阶段,也没出现多少套利机会,而且这个时候关注资本市场的人也不多,都觉得炒股是败家(上非诚勿扰那个炒股的直接24盏灯全灭)。但因为有了对冲手段,一小部分先知先觉的机构开始研究量化投资,在期现套利、股票阿尔法套利等方面应该也赚到些钱。3、2014年--2015年9月,大盘经历暴涨暴跌,中间出现过分级基金套利、可转债套利、ETF套利、期现套利等一 *** 的套利机会,然后在大盘暴跌的时候有一部分量化对冲基金经受住了回撤的考验。量化投资在这一阶段得到快速的发展。4、2015年9月--现在,因为股指期货提高保证金、贴水、当日开仓手数受限等原因,相当部分的量化对冲基金处于停滞状态。总的来说,国内的量化投资整体还处于起步阶段,不像国外那样成熟。但好在国内的资本市场没有完全放开,而且期指、期权等对冲手段也不够成熟,很多品种还是T+1交易,即便国外对冲基金进来也需要修改策略来适应国内的资本市场,所以国内的量化投资者们还是有很多投资机会的,且行且珍惜。
量化投资在中国可行吗?
我认为因为我本身就是做美国股市的,所以对国内市场只能是比较了解的一个状态。美国那边确实是有华人在做中国国内市场内的量化投资。但是这些人都比较低调,比如在经贸大厦租个办公室什么的,但是并不高调地谈论自己在做什么。我也认识几位在广州做了四五年量化投资的朋友。
我觉得单纯的量化投资还是可行的,但是都需要看期望和概率,影响因子很多。主要在CTA用,当然模型会复杂些,工具也多些(比如说考察两个index的spread,跨区等等)。这种相对低频的量化投资可以移植到中国二级市场上。很多人误以为大量的内幕交易和市场操纵会阻碍量化投资,其实不然。量化投资更大的敌人是市场有效,最怕完全效率市场。只要交易所披露信息及时,而市场总有人在交易,有人性在,那么量化投资就是可以做的。
另外,基于量化指标的回测统计 *** 在中国远没有得到广泛使用,大多数投资者采用跟风投资或K线图形的策略。也正因为很少有人用这种 *** 买卖股票,这种 *** 在中国显得真正非常高效,做到了高收益低风险。据我所知,国内京东金融在今年也开始做了,另外实盈机构、爱猫爪APP的量化策略也非常领先。
最后,我认为风靡英美的高频交易在中国目前还不大行,因为手续费太高。
什么是量化交易,未来前景如何?知道的讲讲。
量化交易是指借助现代统计学和数学的 *** ,利用计算机技术来进行交易的证券投资方式。在国外的期货交易市场,程序化渐渐地成为主流,国内则刚刚起步。今天我们就来分析一下它的优势和劣势。
量化交易到底有何种魅力?
所谓量化交易,是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,减少投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化模型=计算机技术+量化分析师制定策略
在股票市场上,量化交易早不是什么新闻,量化从业人士张威告诉人民创投(ID:renminct),在国外七成的交易都是通过计算机决策的,在国内这个数字也接近五成。
过去的股票市场都是靠交易员手动敲键盘来操作的,难免一失手成千古恨,这种行为被戏称为“胖手指”,相比之下,量化交易则如同点石成金的“仙人指”。量化里最美的童话就是“旱涝保收”,牛市也好,熊市也罢,都能大赚特赚。
传统股市量化中最耀眼的明星莫过于詹姆斯西蒙斯,其一手缔造的大奖章基金自1988成立至2009年西蒙斯退休的这21年间,年平均收益率达到了惊人的46%,即使是2007年次贷危机席卷美国,量化基金遭遇滑铁卢的时代,大奖章基金依然获得了骄人的73%的回报率。
量化投资中常用的策略,包括阿尔法策略,CTA策略和套利策略。阿尔法策略通过选股组合,挖掘超越市场整体表现的投资机会;CTA策略通过追随趋势,追涨杀跌;套利策略利用市场价格差异,空手套白狼。每个量化投资策略都是个黑盒子,它们是量化公司的量化投资的核心竞争力,其他外部人无法知道其中的秘密。
旱涝保收,坐收渔利,这样的“黑科技”让币圈的投资者也分外眼红。一家量化交易企业的创始人这样描述自己转行数字货币量化交易的经历:“两年前,炒币的朋友经常24小时看行情,搞得精神疲惫,问我如何在数字货币领域实现量化、程序化交易。他们提供了一个比较简单初级的模型,希望我在它的基础上扩展改造,增加风险管理模块。”
现在大大小小的数字货币量化交易团队采用的量化策略与传统外汇市场、期货市场用来做套利的策略虽然大体相似,可也玩出了新的花样,搬砖就是一个典型。搬砖学名“配对交易”,是指同类型股票或同股异地股票根据价值分析以及股价相对比例相互置换的一种套利 *** ,由于政策原因,同股异地搬砖并不常见,但在数字货币市场,大大小小的交易所数不胜数,不同交易所之间的价格也常有差异,利用价格差低买高卖,就成为数字货币量化中最简单粗暴的盈利方式。
量化交易的优势
1. 严格的纪律性
量化交易有着严格的纪律性,这样做可以克服人性的弱点,如贪婪、恐惧、侥幸心理,也可以克服认知偏差。一个好的投资 *** 应该是一个“透明的盒子”。我们的每一个决策都是有理有据的,特别是有数据支持的。如果有人质问我,某年某月某一天,你为什么购买某支股票的化,我会打开量化交易系统,系统会显示出当时被选择的这只股票与其他的股票相比在成长面上、估值上、资金上、买卖时机上的综合评价情况,而且这个评价是非常全面的,比普通投资者拍脑袋或者简单看某一个指标买卖更具有说服力。
2. 完备的系统性
完备的系统性具体表现为“三多”。首先表现在多层次,包括在大类资产配置、行业选择、精选个股三个层次上我们都有模型;其次是多角度,量化交易的核心投资思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;再者就是多数据,就是海量数据的处理。人脑处理信息的能力是有限的,当一个资本市场只有100只股票,这对定性投资基金经理是有优势的,他可以深刻分析这100家公司。但在一个很大的资本市场,比如有成千上万只股票的时候,强大的定量化交易的信息处理能力能反映它的优势,能捕捉更多的投资机会,拓展更大的投资机会。
3. 妥善运用套利的思想
量化交易正是在找估值洼地,通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会。定性投资大部分时间在琢磨哪一个企业是伟大的企业,那个股票是可以翻倍的股票;与定性投资不同,量化交易大部分精力花在分析哪里是估值洼地,哪一个品种被低估了,买入低估的,卖出高估的。
4. 靠概率取胜
这表现为两个方面,一是定量投资不断的从历史中挖掘有望在未来重复的历史规律并且加以利用。二是在股票实际操作过程中,运用概率分析,提高买卖成功的概率和仓位控制。
量化交易的风险性
首先是一二级市场“级差”风险,其次是交易员操作风险,最后是系统软件的风险。
一二级市场的“级差”是整个套利交易的核心。在现有规则下,ETF套利模式分为两种:一种是通过购买一揽子票,按照兑换比例在一级市场换得相应的ETF份额,然后在二级市场上将ETF卖出;另一种则与前者相反,是在二级市场上购买ETF份额,通过兑换比例换得相应数量的股票,然后在二级市场卖出股票。交易的顺序视股票价格、兑换比例、ETF份额交易价格的变动而决定。
由于股价的变动,ETF套利级差转瞬即逝,因此纷繁复杂的计算过程,目前业内由计算机完成,交易员通过设定计算程序并按照结果决定策略,又或者完全自动让系统在出现套利空间时自动交易,后者便称之为程序化交易。
又因为套利的空间非常小,通常只有万分之几,因此套利交易为了获取适中的收益,参与的资金量都比较大。如果交易员把握不当顺序做反,则投资将出现亏损,这便是级差风险。而为了控制这样的人为风险,券商一般提倡自动化交易,方向由计算机把握,交易员输入交易数量即可。
第二种风险是交易员操作失误,比如光大这次的乌龙指事件,有可能是交易员在输入数量的时候出现了失误。这同时也牵扯到第三种风险,系统软件风险,每个交易员在系统中都有相应的交易权限,包括数量、金额。光大本次涉及的金额坊间一度传闻为70亿元,而数量如此巨大的金额是如何绕过系统权限完成交易的?这个问题的暴露,也导致业内质疑光大风控并未做足。
这个平台犹如币圈的一个缩影,每一个人都心惊胆战地伏在荷官的膝下,聆听骰子撞击的声音,殊不知荷官才是他们中的头号玩家。“职业投资者都知道有庄家”,张威直言。多数的量化平台可能会推出更复杂的止损策略和更出色的套利机制,但除非平台拥有足够雄厚的资本成为游戏的庄家,否则就只有被收割的命运。
量化作为工具,或许无可厚非,但许多数字货币基金以“量化”为名,公开募集资金,行走在法律的边缘。中国人民大学教授赵锡军认为,金融行业和其他行业不同,参与金融活动,动用的是别人的钱,发生风险,别人会有损失,因此 *** 需要更加严格地监管。
量化交易一念天堂,一念地狱。小编在这里希望广大投资者切莫游走在法律的边缘,以身试法,否则等待你的将是法律的制裁
量化投资前景怎么样的介绍就到这里,感谢你花时间阅读本站内容,更多关于量化投资有什么优势、量化投资前景怎么样的信息别忘了在本站进行查找喔。