欢迎您访问365答案网,请分享给你的朋友!
生活常识 学习资料

Pandas函数

时间:2023-05-30

1.data structure:

Series:

Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers,Python objects, etc.).

s = pd.Series(data, index=index, dtype, name, copy))

data:

a Python dictan ndarraya scalar value (like 5)

index:

    索引,默认为0 ~ (length-1),也可自行以list形式设置

   eg1 data为randn生成

s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])sa 0.469112b -0.282863c -1.509059d -1.135632e 1.212112dtype: float64

  eg2 data 为dict

d = {"b": 1, "a": 0, "c": 2}pd.Series(d)Out:b 1a 0c 2# data为dict类型时,若index不默认设置,则key变为索引值

Dataframe

Dataframe 是一个表格型的数据结构

pandas.Dataframe( data, index, columns, dtype, copy)

data:一组数据(ndarray、series, map, lists, dict 等类型)。

index:索引值,或者可以称为行标签。

columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。

dtype:数据类型。

copy:拷贝数据,默认为 False。

eg1: data 为 dict

# Pre-defined listsnames = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt']dr = [True, False, False, False, True, True, True]cpc = [809, 731, 588, 18, 200, 70, 45]# import pandas as pdimport pandas as pd# Create dictionary my_dict with three key:value pairs: my_dictmy_dict = {'country' : names, 'drives_right' : dr,'car_per_cap' : cpc}# Build a Dataframe cars from my_dict: carscars=pd.Dataframe(my_dict)# Definition of row_labelsrow_labels = ['US', 'AUS', 'JPN', 'IN', 'RU', 'MOR', 'EG']# Specify row labels of cars 设置行label,列label默认为keycars.index=row_labels print(cars)

Pandas CSV 

1、读入csv数据

# import the cars.csvcars = pd.read_csv('cars.csv',index_col=0)#index_col=0 即用csv中第1列作为 row label,index_col=1, 即用csv中第2列为 row label,由此类推..、; 默认情况下: index_col 为0,1,2,3...print(cars.to_string())

to_string() 用于返回 Dataframe 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 ..、代替。

outcome

 

2、将 Dataframe 存储为 csv 文件:

cars.to_csv('cars.csv')

3.数据处理

读取前n行

head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行。

print(cars.head(n))

读取后n行

print(cars.tail(n))

获取某列

++++++++以label+++++++++为索引#print as seriesprint(cars['country'])#print as dataframe: print(cars[['country']])# Print out Dataframe with country and drives_right columnsprint(cars[['country','drives_right']])+++++++以序号为索引+++++++++# Print out first 3 observationsprint(cars[0:3])# Print out fourth, fifth and sixth observationprint(cars[3:6])

打印某行/某列(通用)

#打印某行print as series:cars.loc['RU'] cars.iloc[4]print as dataframe:cars.loc[['RU']]cars.iloc[[4]]cars.loc[['RU', 'AUS']]cars.iloc[[4, 1]]

打印某个位置的元素

print as series:cars.loc['IN', 'cars_per_cap']cars.iloc[3, 0]cars.loc[['IN', 'RU'], ['cars_per_cap', 'country']] # [[行m,行n],[列i,列j]]cars.iloc[[3, 4], [0, 1]]print as dataframe:cars.loc[[['IN', 'RU']], [['cars_per_cap', 'country']]]

4.数据清洗

  删除空白数据

Dataframe.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

axis:默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列。how:默认为 'any' 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how='all' 一行(或列)都是 NA 才去掉这整行。thresh:设置需要多少非空值的数据才可以保留下来的。subset:设置想要检查的列。如果是多个列,可以使用列名的 list 作为参数。inplace:如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改的是源数据。

(1)Pandas默认的空白数字

Pandas 把 n/a 和 NA 当作空数据,na 不是空数据

(2)设置空白数字

import pandas as pdmissing_values = ["n/a", "na", "--"]df = pd.read_csv('property-data.csv', na_values = missing_values)

(3)判断某列各个单元格是否为空

print (df['NUM_BEDROOMS'].isnull())

返回:

(4)删除

删除指定列中包含空值的行

df.dropna(subset=['ST_NUM'], inplace = True)

(5)replace

对整个dataframe进行操作

df.fillna(12345, inplace = True)

 对指定列进行操作

df['PID'].fillna(12345, inplace = True)

删除重复数据

用dupicated()判断,如果对应的数据是重复的,duplicated() 会返回 True,否则返回 False。

print(df.duplicated())

结果:0 False1 False2 True3 Falsedtype: bool

用drop_duplicates() 删除

df.drop_duplicates(inplace=True)

删除符合某些条件的数据

import pandas as pdperson = { "name": ['Google', 'Runoob' , 'Taobao'], "age": [50, 40, 12345] # 12345 年龄数据是错误的}df = pd.Dataframe(person)for x in df.index: if df.loc[x, "age"] > 120: df.drop(x, inplace = True)print(df.to_string())

5.计算

中位数/均值/众数

median()、mean() 和 mode()

x = df["ST_NUM"].mean()

6.其他功能函数

 (1) dataframe.shift()

Dataframe.shift(periods=1, freq=None, axis=0)

[该部分参考自pandas常用函数之shift - pinweihelai - 博客园 ,仅用于个人学习]

假如现在有一个Dataframe数据df,如下所示:

indexvalue1A0B1C2D3

df.shift()#等价于df.shift(1)#df.shift(2) 即表示向下移2#df.shift(-1) 即表示向上移1

就会变成:

indexvalue1ANaNB0C1D2

(2) dataframe.pct_change(n)

表示当前元素与先前元素的相差百分比,当然指定periods=n,表示当前元素与先前n 个元素的相差百分比。

(3)heatmap 热度图

Plot rectangular data as a color-encoded matrix.

import seaborn as snssns.heatmap(dataset )

heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, square=False, xticklabels='auto', yticklabels='auto', mask=None, ax=None, **kwargs)

key index:

annot :  If True, write the data value in each cell. 

Copyright © 2016-2020 www.365daan.com All Rights Reserved. 365答案网 版权所有 备案号:

部分内容来自互联网,版权归原作者所有,如有冒犯请联系我们,我们将在三个工作时内妥善处理。