在 Kubernetes 里,Pod 是最小的原子调度单位。这也就意味着,所有跟调度和资源管理相关的属性都应该是属于 Pod 对象的字段。而这其中最重要的部分,就是 Pod 的 CPU 和内存配置,如下所示:
apiVersion: v1kind: Podmetadata: name: frontendspec: containers: - name: db image: mysql env: - name: MYSQL_ROOT_PASSWORD value: "password" resources: requests: memory: "64Mi" cpu: "250m" limits: memory: "128Mi" cpu: "500m" - name: wp image: wordpress resources: requests: memory: "64Mi" cpu: "250m" limits: memory: "128Mi" cpu: "500m"
在 Kubernetes 中,像 CPU 这样的资源被称作“可压缩资源”(compressible resources)。它的典型特点是,当可压缩资源不足时,Pod 只会“饥饿”,但不会退出。
而像内存这样的资源,则被称作“不可压缩资源(incompressible resources)。当不可压缩资源不足时,Pod 就会因为 OOM(Out-Of-Memory)被内核杀掉。
其中,Kubernetes 里为 CPU 设置的单位是“CPU 的个数”。比如,cpu=1 指的就是,这个 Pod 的 CPU 限额是 1 个 CPU。当然,具体“1 个 CPU”在宿主机上如何解释,是 1 个 CPU 核心,还是 1 个 vCPU,还是 1 个 CPU 的超线程(Hyperthread),完全取决于宿主机的 CPU 实现方式。Kubernetes 只负责保证 Pod 能够使用到“1 个 CPU”的计算能力。
Kubernetes 里 Pod 的 CPU 和内存资源,实际上还要分为 limits 和 requests 两种情况,如下所示:
spec.containers[].resources.limits.cpuspec.containers[].resources.limits.memoryspec.containers[].resources.requests.cpuspec.containers[].resources.requests.memory
在调度的时候,kube-scheduler 只会按照 requests 的值进行计算。而在真正设置 Cgroups 限制的时候,kubelet 则会按照 limits 的值来进行设置。
更确切地说,当你指定了 requests.cpu=250m 之后,相当于将 Cgroups 的 cpu.shares 的值设置为 (250/1000)*1024。而当你没有设置 requests.cpu 的时候,cpu.shares 默认则是 1024。这样,Kubernetes 就通过 cpu.shares 完成了对 CPU 时间的按比例分配。
Kubernetes 这种对 CPU 和内存资源限额的设计,实际上参考了 Borg 论文中对“动态资源边界”的定义,既:容器化作业在提交时所设置的资源边界,并不一定是调度系统所必须严格遵守的,这是因为在实际场景中,大多数作业使用到的资源其实远小于它所请求的资源限额。
基于这种假设,Borg 在作业被提交后,会主动减小它的资源限额配置,以便容纳更多的作业、提升资源利用率。而当作业资源使用量增加到一定阈值时,Borg 会通过“快速恢复”过程,还原作业原始的资源限额,防止出现异常情况。
而 Kubernetes 的 requests+limits 的做法,其实就是上述思路的一个简化版:用户在提交 Pod 时,可以声明一个相对较小的 requests 值供调度器使用,而 Kubernetes 真正设置给容器 Cgroups 的,则是相对较大的 limits 值。不难看到,这跟 Borg 的思路相通的。
在 Kubernetes 中,不同的 requests 和 limits 的设置方式,其实会将这个 Pod 划分到不同的 QoS 级别当中。
当 Pod 里的每一个 Container 都同时设置了 requests 和 limits,并且 requests 和 limits 值相等的时候,这个 Pod 就属于 Guaranteed 类别,如下所示:
apiVersion: v1kind: Podmetadata: name: qos-demo namespace: qos-examplespec: containers: - name: qos-demo-ctr image: nginx resources: limits: memory: "200Mi" cpu: "700m" requests: memory: "200Mi" cpu: "700m"
当这个 Pod 创建之后,它的 qosClass 字段就会被 Kubernetes 自动设置为 Guaranteed。需要注意的是,当 Pod 仅设置了 limits 没有设置 requests 的时候,Kubernetes 会自动为它设置与 limits 相同的 requests 值,所以,这也属于 Guaranteed 情况。
而当 Pod 不满足 Guaranteed 的条件,但至少有一个 Container 设置了 requests。那么这个 Pod 就会被划分到 Burstable 类别。比如下面这个例子:
apiVersion: v1kind: Podmetadata: name: qos-demo-2 namespace: qos-examplespec: containers: - name: qos-demo-2-ctr image: nginx resources: limits memory: "200Mi" requests: memory: "100Mi"
而如果一个 Pod 既没有设置 requests,也没有设置 limits,那么它的 QoS 类别就是 BestEffort。比如下面这个例子:
apiVersion: v1kind: Podmetadata: name: qos-demo-3 namespace: qos-examplespec: containers: - name: qos-demo-3-ctr image: nginx
那么,Kubernetes 为 Pod 设置这样三种 QoS 类别,具体有什么作用呢?
实际上,QoS 划分的主要应用场景,是当宿主机资源紧张的时候,kubelet 对 Pod 进行 Eviction(即资源回收)时需要用到的。
而当 Eviction 发生的时候,kubelet 具体会挑选哪些 Pod 进行删除操作,就需要参考这些 Pod 的 QoS 类别了。
首当其冲的,自然是 BestEffort 类别的 Pod。( Pod 既没有设置 requests,也没有设置 limits)其次,是属于 Burstable 类别、并且发生“饥饿”的资源使用量已经超出了 requests 的 Pod。( Pod 不满足 Guaranteed 的条件,但至少有一个 Container 设置了 requests。那么这个 Pod 就会被划分到 Burstable 类别)最后,才是 Guaranteed 类别。并且,Kubernetes 会保证只有当 Guaranteed 类别的 Pod 的资源使用量超过了其 limits 的限制,或者宿主机本身正处于 Memory Pressure 状态时,Guaranteed 的 Pod 才可能被选中进行 Eviction 操作。